Visual Analytics of Taxi Trajectory Data via Topical Sub-trajectories

Huan Liu, Sichen Jin, Yuyu Yan, Y. Tao, Hai Lin
{"title":"Visual Analytics of Taxi Trajectory Data via Topical Sub-trajectories","authors":"Huan Liu, Sichen Jin, Yuyu Yan, Y. Tao, Hai Lin","doi":"10.1109/PacificVis.2019.00027","DOIUrl":null,"url":null,"abstract":"GPS-based taxi trajectories contain valuable knowledge about movement behaviors for transportation and urban planning. Topic modeling is an effective tool to extract semantic information from taxi trajectories. However, previous methods generally ignore the direction of trajectories. In this paper, we employ the bigram topic model instead of traditional topic models to analyze textualized trajectories to take into account the direction information of trajectories. We further propose a modified Apriori algorithm to extract frequent sub-trajectories and use them to represent each topic as topical sub-trajectories. Finally, we design a visual analytics system with several linked views to facilitate users to interactively explore topics, sub-trajectories, and trips. We demonstrate the effectiveness of our system via case studies with Chengdu taxi trajectory data.","PeriodicalId":208856,"journal":{"name":"2019 IEEE Pacific Visualization Symposium (PacificVis)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2019.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

GPS-based taxi trajectories contain valuable knowledge about movement behaviors for transportation and urban planning. Topic modeling is an effective tool to extract semantic information from taxi trajectories. However, previous methods generally ignore the direction of trajectories. In this paper, we employ the bigram topic model instead of traditional topic models to analyze textualized trajectories to take into account the direction information of trajectories. We further propose a modified Apriori algorithm to extract frequent sub-trajectories and use them to represent each topic as topical sub-trajectories. Finally, we design a visual analytics system with several linked views to facilitate users to interactively explore topics, sub-trajectories, and trips. We demonstrate the effectiveness of our system via case studies with Chengdu taxi trajectory data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部子轨迹的出租车轨迹数据可视化分析
基于gps的出租车轨迹包含关于交通和城市规划的运动行为的宝贵知识。主题建模是从滑行轨迹中提取语义信息的有效工具。然而,以前的方法通常忽略了轨迹的方向。本文采用双元主题模型来代替传统的主题模型来分析文本化的轨迹,以考虑轨迹的方向信息。我们进一步提出了一种改进的Apriori算法来提取频繁子轨迹,并用它们来表示每个主题作为主题子轨迹。最后,我们设计了一个具有多个链接视图的可视化分析系统,以方便用户交互式地探索主题、子轨迹和行程。我们通过成都出租车轨迹数据的案例研究证明了我们系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analysis of Ligand Trajectories in Molecular Dynamics Object-in-Hand Feature Displacement with Physically-Based Deformation Visual Exploration of Circulation Rolls in Convective Heat Flows Analysis of Coupled Thermo-Hydro-Mechanical Simulations of a Generic Nuclear Waste Repository in Clay Rock Using Fiber Surfaces Space-Time Slicing: Visualizing Object Detector Performance in Driving Video Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1