Nonlinear statistical methods for atrial fibrillation detection on electrocardiogram

Rebeh Mabrouki, B. Khaddoumi, M. Sayadi
{"title":"Nonlinear statistical methods for atrial fibrillation detection on electrocardiogram","authors":"Rebeh Mabrouki, B. Khaddoumi, M. Sayadi","doi":"10.1109/CISTEM.2014.7349356","DOIUrl":null,"url":null,"abstract":"The rapid and disorganized electrical activity that characterizes Atrial Fibrillation generates an increases in both variability and complexity of RR intervals series. Based on these characteristics which are variability and complexity, we have developed an algorithm combining two nonlinear statistical techniques in order to detect the presence of Atrial Fibrillation. These two nonlinear statistical methods are: Poincare plot which quantifies the variability of RR intervals series and the sample entropy which characterizes the complexity of the RR intervals series. We used the MIT-BIH Atrial Fibrillation database to train the algorithm and then we tested it on the MIT-BIH Arrhythmia database. Using thresholds and segment length determined by Receiver Operating Characteristic (ROC) curves we achieved Se=97.01% and Sp=93.92% for the MIT-BIH Atrial Fibrillation database and we obtained Se=98.67% and Sp=86.14% for the MIT-BIH Arrhythmia database. The proposed algorithm is compared to another method, namely “Dash's” detection method [1]. For the Dash's method, we achieved Se=97.09% and Sp=90.98% for the MIT-BIH Atrial Fibrillation database and we obtained Se=96% and Sp=82.31% for the MIT-BIH Arrhythmia database.","PeriodicalId":115632,"journal":{"name":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISTEM.2014.7349356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The rapid and disorganized electrical activity that characterizes Atrial Fibrillation generates an increases in both variability and complexity of RR intervals series. Based on these characteristics which are variability and complexity, we have developed an algorithm combining two nonlinear statistical techniques in order to detect the presence of Atrial Fibrillation. These two nonlinear statistical methods are: Poincare plot which quantifies the variability of RR intervals series and the sample entropy which characterizes the complexity of the RR intervals series. We used the MIT-BIH Atrial Fibrillation database to train the algorithm and then we tested it on the MIT-BIH Arrhythmia database. Using thresholds and segment length determined by Receiver Operating Characteristic (ROC) curves we achieved Se=97.01% and Sp=93.92% for the MIT-BIH Atrial Fibrillation database and we obtained Se=98.67% and Sp=86.14% for the MIT-BIH Arrhythmia database. The proposed algorithm is compared to another method, namely “Dash's” detection method [1]. For the Dash's method, we achieved Se=97.09% and Sp=90.98% for the MIT-BIH Atrial Fibrillation database and we obtained Se=96% and Sp=82.31% for the MIT-BIH Arrhythmia database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心房颤动心电图非线性统计检测方法
房颤特征的快速和无组织的电活动增加了RR间隔序列的变异性和复杂性。基于这些特征的可变性和复杂性,我们开发了一种结合两种非线性统计技术的算法,以检测心房颤动的存在。这两种非线性统计方法分别是量化RR区间序列可变性的庞加莱图和表征RR区间序列复杂性的样本熵。我们使用MIT-BIH心房颤动数据库来训练算法然后在MIT-BIH心律失常数据库上进行测试。使用受试者工作特征(ROC)曲线确定的阈值和片段长度,我们获得MIT-BIH房颤数据库Se=97.01%, Sp=93.92%,获得MIT-BIH心律失常数据库Se=98.67%, Sp=86.14%。将本文算法与另一种方法“Dash”检测法[1]进行比较。Dash方法对MIT-BIH房颤数据库的Se=97.09%, Sp=90.98%,对MIT-BIH心律失常数据库的Se=96%, Sp=82.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive hysteresis controller for the Switched Reluctance Machines Critical current density determination of superconducting material Induction machine finite element model for field-oriented control in Electric vehicle power train Solar radiation forecasting using artificial neural network for local power reserve Modeling of a radial flux PM rotating machine using a new hybrid analytical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1