A Comparison of Short-Circuit Failure Mechanisms of 1.2 kV 4H-SiC MOSFETs and JBSFETs

Dongyoung Kim, Skylar DeBoer, S. Jang, Adam J. Morgan, Woongje Sung
{"title":"A Comparison of Short-Circuit Failure Mechanisms of 1.2 kV 4H-SiC MOSFETs and JBSFETs","authors":"Dongyoung Kim, Skylar DeBoer, S. Jang, Adam J. Morgan, Woongje Sung","doi":"10.1109/WiPDA56483.2022.9955302","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison of 1.2 kV 4H-SiC MOSFETs and Ti JBSFETs with deep P-well structures. For a fair comparison of the short-circuit characteristics between the MOSFETs and JBSFETs, an innovative design approach for the JBSFETs was implemented to obtain the same specific on-resistance to the MOSFETs. To improve the short-circuit characteristics of the MOSFETs and JBSFETs, channeling implantation was conducted to form a deep P-well structure, that helps reduce the maximum saturation current during the shortcircuit event. Using this approach superior short-circuit characteristics are achieved in the MOSFETs and JBSFETs. However, the JBSFETs provide a shorter shortcircuit withstand time than the MOSFETs due to the high leakage current from Schottky contact. Sentaurus 2D TCAD was used to understand and clarify the short-circuit mechanisms of the MOSFETs and JBSFETs. It was discovered that the MOSFETs failed due to the high current in the channel region, but the failure of JBSFETs happens in the Schottky contact. Moreover, solutions to improve the short-circuit characteristics of the JBSFETs are proposed; a narrow Schottky width and high work function metal.","PeriodicalId":410411,"journal":{"name":"2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiPDA56483.2022.9955302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comparison of 1.2 kV 4H-SiC MOSFETs and Ti JBSFETs with deep P-well structures. For a fair comparison of the short-circuit characteristics between the MOSFETs and JBSFETs, an innovative design approach for the JBSFETs was implemented to obtain the same specific on-resistance to the MOSFETs. To improve the short-circuit characteristics of the MOSFETs and JBSFETs, channeling implantation was conducted to form a deep P-well structure, that helps reduce the maximum saturation current during the shortcircuit event. Using this approach superior short-circuit characteristics are achieved in the MOSFETs and JBSFETs. However, the JBSFETs provide a shorter shortcircuit withstand time than the MOSFETs due to the high leakage current from Schottky contact. Sentaurus 2D TCAD was used to understand and clarify the short-circuit mechanisms of the MOSFETs and JBSFETs. It was discovered that the MOSFETs failed due to the high current in the channel region, but the failure of JBSFETs happens in the Schottky contact. Moreover, solutions to improve the short-circuit characteristics of the JBSFETs are proposed; a narrow Schottky width and high work function metal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1.2 kV 4H-SiC mosfet与jbsfet短路失效机理比较
本文对1.2 kV 4H-SiC mosfet和深p井结构的Ti jbsfet进行了比较。为了公平地比较mosfet和jbsfet之间的短路特性,采用了一种创新的jbsfet设计方法,以获得与mosfet相同的特定导通电阻。为了改善mosfet和jbsfet的短路特性,进行了沟道注入形成深p阱结构,有助于降低短路事件时的最大饱和电流。利用这种方法,可以在mosfet和jbsfet中实现优越的短路特性。然而,由于肖特基触点的高泄漏电流,jbsfet提供比mosfet更短的耐短路时间。使用Sentaurus 2D TCAD来了解和阐明mosfet和jbsfet的短路机制。发现mosfet的失效是由于沟道区域的大电流,而jbsfet的失效发生在肖特基触点。提出了改善jbsfet短路特性的解决方案;窄肖特基宽度和高功功能金属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Temperature Robustness of Enhancement-Mode p-GaN-Gated AlGaN/GaN HEMT Technology Thermal Design and Experimental Evaluation of a 1kV, 500A T-Type Modular DC Circuit Breaker A 5 to 50 V, −25 to 225 °C, 0.065%/°C GaN MIS-HEMT Monolithic Compact 2T Voltage Reference Design of High Power Converter with Single Low Ron Discrete SiC Device Novel High-Voltage-Gain High-Frequency Nonisolated Three-port DC-DC Converter with Zero Input Current Ripple and Soft Switching Capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1