Comparison of Distance Metrics on Fuzzy C-Means Algorithm Through Customer Segmentation

Uus Rusdiana, Iin Ernawati, Noor Falih, A. Arista
{"title":"Comparison of Distance Metrics on Fuzzy C-Means Algorithm Through Customer Segmentation","authors":"Uus Rusdiana, Iin Ernawati, Noor Falih, A. Arista","doi":"10.1109/ICIMCIS53775.2021.9699206","DOIUrl":null,"url":null,"abstract":"Distance metrics are often used in a similarity-based algorithm like clustering to improve the performance when deciding to group data based on similarities. It has a crucial role when building machine learning models. Therefore, this research would like to examine the optimal distance metrics method in the clustering algorithm. The algorithm that will be used in this research is Fuzzy C-Means clustering by applying several data distance measurement methods (Euclidean Distance, Manhattan Distance, Chebyshev Distance, and Minkowski Distance). Then, the resulting cluster will be evaluated using a validity index including partition coefficient index (PC), modified partition coefficient index (MPC), and RMSE. The results represent that the most optimal distance of the 2 clusters dataset was obtained using Manhattan Distance measurement methods. The most optimal distance of the 3 clusters dataset was obtained using Minkowski Distance measurement methods. From a series of conducted experiments of the dataset, the Manhattan and Minkowski measurement methods represented the optimal results for the FCM algorithm.","PeriodicalId":250460,"journal":{"name":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS53775.2021.9699206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Distance metrics are often used in a similarity-based algorithm like clustering to improve the performance when deciding to group data based on similarities. It has a crucial role when building machine learning models. Therefore, this research would like to examine the optimal distance metrics method in the clustering algorithm. The algorithm that will be used in this research is Fuzzy C-Means clustering by applying several data distance measurement methods (Euclidean Distance, Manhattan Distance, Chebyshev Distance, and Minkowski Distance). Then, the resulting cluster will be evaluated using a validity index including partition coefficient index (PC), modified partition coefficient index (MPC), and RMSE. The results represent that the most optimal distance of the 2 clusters dataset was obtained using Manhattan Distance measurement methods. The most optimal distance of the 3 clusters dataset was obtained using Minkowski Distance measurement methods. From a series of conducted experiments of the dataset, the Manhattan and Minkowski measurement methods represented the optimal results for the FCM algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
客户细分模糊c均值算法的距离度量比较
距离度量通常用于基于相似度的算法(如聚类),以便在决定基于相似度对数据进行分组时提高性能。它在构建机器学习模型时起着至关重要的作用。因此,本研究将探讨聚类算法中的最优距离度量方法。本研究将使用的算法是模糊c均值聚类,通过应用几种数据距离度量方法(欧几里得距离、曼哈顿距离、切比雪夫距离和闵可夫斯基距离)。然后,将使用有效性指标(包括分区系数指数(PC)、修改分区系数指数(MPC)和RMSE)对生成的聚类进行评估。结果表明,使用曼哈顿距离测量方法获得了2个聚类数据集的最优距离。采用闵可夫斯基距离测量方法获得3个聚类数据集的最优距离。通过对数据集进行的一系列实验,Manhattan和Minkowski测量方法代表了FCM算法的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Word Expansion using Synonyms in Indonesian Short Essay Auto Scoring Sentiment Analysis of COVID-19 Vaccines from Indonesian Tweets and News Headlines using Various Machine Learning Techniques One Data ASN Framework (ODAF) for Indonesian State Civil Apparatus Sentiment Analysis of Big Cities on The Island of Java in Indonesia from Twitter Data as A Recommender System Effect Of The Learning Rate, Hidden Layer, And Epoch In Lung Cancer Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1