An Enhanced Classification of Bacteria Pathogen on Microscopy Images Using Deep Learning

S. A. Akbar, K. Ghazali, H. Hasan, Z. Mohamed, W. S. Aji
{"title":"An Enhanced Classification of Bacteria Pathogen on Microscopy Images Using Deep Learning","authors":"S. A. Akbar, K. Ghazali, H. Hasan, Z. Mohamed, W. S. Aji","doi":"10.1109/ISRITI54043.2021.9702809","DOIUrl":null,"url":null,"abstract":"Classification of bacteria pathogens has significant importance issues in the clinical microbiology field. The taxonomy identification of bacteria is usually recognized through microscopy imaging. The classical procedure has the lacks detection and a high misclassification rate. Recently, computer-aided detection is an applied deep learning approach that has been growing to improve classification quality. This study proposed an enhanced classification technique to recognize the bacterial pathogen images. The DensNet201 pre-trained CNN architecture has been used for deep feature extraction and classification. In addition, the transfer learning with the freeze layer technique applied can enhance the accuracy performance and reduce the false-positive rate. The experimental result can improve state-of-the-art decision-making.","PeriodicalId":156265,"journal":{"name":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI54043.2021.9702809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Classification of bacteria pathogens has significant importance issues in the clinical microbiology field. The taxonomy identification of bacteria is usually recognized through microscopy imaging. The classical procedure has the lacks detection and a high misclassification rate. Recently, computer-aided detection is an applied deep learning approach that has been growing to improve classification quality. This study proposed an enhanced classification technique to recognize the bacterial pathogen images. The DensNet201 pre-trained CNN architecture has been used for deep feature extraction and classification. In addition, the transfer learning with the freeze layer technique applied can enhance the accuracy performance and reduce the false-positive rate. The experimental result can improve state-of-the-art decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习增强显微镜图像上细菌病原体的分类
病原菌的分类是临床微生物学领域一个非常重要的问题。细菌的分类鉴定通常是通过显微镜成像来识别的。经典方法存在检出率低、误分类率高的问题。近年来,计算机辅助检测作为一种应用深度学习的方法不断发展,以提高分类质量。本研究提出了一种增强分类技术来识别细菌病原体图像。DensNet201预训练CNN架构被用于深度特征提取和分类。此外,结合冻结层技术的迁移学习可以提高准确率,降低误报率。实验结果可以提高决策水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved HEVC Video Encoding Quality With Multi Scalability Techniques Indonesian Clickbait Detection Using Improved Backpropagation Neural Network Sentiment Analysis for Twitter Chatter During the Early Outbreak Period of COVID-19 Online Retail Pattern Quality Improvement: From Frequent Sequential Pattern to High-Utility Sequential Pattern East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1