Unsupervised non-parametric region segmentation using level sets

T. Kadir, M. Brady
{"title":"Unsupervised non-parametric region segmentation using level sets","authors":"T. Kadir, M. Brady","doi":"10.1109/ICCV.2003.1238636","DOIUrl":null,"url":null,"abstract":"We present a novel non-parametric unsupervised segmentation algorithm based on region competition (Zhu and Yuille, 1996); but implemented within a level sets framework (Osher and Sethian, 1988). The key novelty of the algorithm is that it can solve N /spl ges/ 2 class segmentation problems using just one embedded surface; this is achieved by controlling the merging and splitting behaviour of the level sets according to a minimum description length (MDL) (Leclerc (1989) and Rissanen (1985)) cost function. This is in contrast to N class region-based level set segmentation methods to date which operate by evolving multiple coupled embedded surfaces in parallel (Chan et al., 2002). Furthermore, it operates in an unsupervised manner; it is necessary neither to specify the value of N nor the class models a-priori. We argue that the level sets methodology provides a more convenient framework for the implementation of the region competition algorithm, which is conventionally implemented using region membership arrays due to the lack of a intrinsic curve representation. Finally, we generalise the Gaussian region model used in standard region competition to the non-parametric case. The region boundary motion and merge equations become simple expressions containing cross-entropy and entropy terms.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

We present a novel non-parametric unsupervised segmentation algorithm based on region competition (Zhu and Yuille, 1996); but implemented within a level sets framework (Osher and Sethian, 1988). The key novelty of the algorithm is that it can solve N /spl ges/ 2 class segmentation problems using just one embedded surface; this is achieved by controlling the merging and splitting behaviour of the level sets according to a minimum description length (MDL) (Leclerc (1989) and Rissanen (1985)) cost function. This is in contrast to N class region-based level set segmentation methods to date which operate by evolving multiple coupled embedded surfaces in parallel (Chan et al., 2002). Furthermore, it operates in an unsupervised manner; it is necessary neither to specify the value of N nor the class models a-priori. We argue that the level sets methodology provides a more convenient framework for the implementation of the region competition algorithm, which is conventionally implemented using region membership arrays due to the lack of a intrinsic curve representation. Finally, we generalise the Gaussian region model used in standard region competition to the non-parametric case. The region boundary motion and merge equations become simple expressions containing cross-entropy and entropy terms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用水平集的无监督非参数区域分割
我们提出了一种新的基于区域竞争的非参数无监督分割算法(Zhu and Yuille, 1996);但要在关卡集框架内执行。该算法的新颖之处在于仅使用一个嵌入曲面就可以解决N /spl / 2类分割问题;这是通过根据最小描述长度(MDL) (Leclerc(1989)和Rissanen(1985))成本函数控制关卡集的合并和分裂行为来实现的。这与迄今为止N类基于区域的水平集分割方法形成对比,后者通过并行发展多个耦合嵌入表面来操作(Chan et al., 2002)。此外,它以一种无人监督的方式运作;既不需要指定N的值,也不需要先验地指定类模型。我们认为水平集方法为区域竞争算法的实现提供了一个更方便的框架,由于缺乏固有的曲线表示,区域竞争算法通常使用区域成员数组实现。最后,我们将标准区域竞争中的高斯区域模型推广到非参数情况。区域边界运动和合并方程变成包含交叉熵和熵项的简单表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1