Model-Error-Observer-Based Control of Robotic Manipulator with Uncertain Dynamics

Qiang Li, Yongsheng Gao, Boyang Ti, Jie Zhao
{"title":"Model-Error-Observer-Based Control of Robotic Manipulator with Uncertain Dynamics","authors":"Qiang Li, Yongsheng Gao, Boyang Ti, Jie Zhao","doi":"10.1109/INFOCT.2019.8710865","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear controller for robotic manipulator with unknown model parameters is proposed to reach high accurate trajectory tracking. The unknown parameters such as uncertain moment of inertia, uncertain geometry of manipulator, unknown friction torque, unknown gravitational torque and payload variation are addressed. Model-based control methods require accurate model parameters, while it is difficult to get these parameters. To solve this problem, a model-error observer is proposed, and it observes the parameter error effectively. In the proposed control law, the model-error observer is adopted to handle unknown model parameters, and this controller solves the problem of model-based control methods effectively. The robust performance of the control law is confirmed in simulations, and the results show accurate path tracking in spite of the existing friction and unknown model parameters.","PeriodicalId":369231,"journal":{"name":"2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCT.2019.8710865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a nonlinear controller for robotic manipulator with unknown model parameters is proposed to reach high accurate trajectory tracking. The unknown parameters such as uncertain moment of inertia, uncertain geometry of manipulator, unknown friction torque, unknown gravitational torque and payload variation are addressed. Model-based control methods require accurate model parameters, while it is difficult to get these parameters. To solve this problem, a model-error observer is proposed, and it observes the parameter error effectively. In the proposed control law, the model-error observer is adopted to handle unknown model parameters, and this controller solves the problem of model-based control methods effectively. The robust performance of the control law is confirmed in simulations, and the results show accurate path tracking in spite of the existing friction and unknown model parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型误差观测器的不确定动力学机械臂控制
为了实现高精度的轨迹跟踪,提出了一种模型参数未知的机械臂非线性控制器。解决了不确定惯性矩、不确定机械臂几何形状、未知摩擦力矩、未知重力力矩和载荷变化等未知参数。基于模型的控制方法需要精确的模型参数,而这些参数很难得到。为了解决这一问题,提出了模型误差观测器,该观测器能有效地观测参数误差。该控制律采用模型误差观测器处理未知的模型参数,有效地解决了基于模型的控制方法存在的问题。仿真结果表明,该控制律具有良好的鲁棒性,在存在摩擦和模型参数未知的情况下仍能实现精确的路径跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilization of Data Mining for Generalizable, All-Admission Prediction of Inpatient Mortality Development of Navigation Monitoring & Assistance Service Data Model ITIKI Plus: A Mobile Based Application for Integrating Indigenous Knowledge and Scientific Agro-Climate Decision Support for Africa’s Small-Scale Farmers TFDroid: Android Malware Detection by Topics and Sensitive Data Flows Using Machine Learning Techniques Weighted DV-Hop Localization Algorithm for Wireless Sensor Network based on Differential Evolution Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1