Impression estimation model and pattern search system based on style features and Kansei metric

N. Sunda, Kensuke Tobitani, A. Takemoto, Iori Tani, Yusuke Tani, Taishi Fujiwara, N. Nagata, Nobufumi Morita
{"title":"Impression estimation model and pattern search system based on style features and Kansei metric","authors":"N. Sunda, Kensuke Tobitani, A. Takemoto, Iori Tani, Yusuke Tani, Taishi Fujiwara, N. Nagata, Nobufumi Morita","doi":"10.1145/3281505.3281610","DOIUrl":null,"url":null,"abstract":"In this study, we aimed to construct impression estimation models of clothing patterns based on style features and Kansei metric. We first conducted a subjective evaluation experiment and a factor analysis, and quantified visual impressions of flower patterns. Following that, we used style features using CNN as image features suitable for representing flower patterns. Then, with a Lasso regression, we reduced the dimension based on Kansei metric (impression evaluation) and modeled the relationship between visual impressions and image features. Furthermore, we implemented a pattern search system using the modeled relationship.","PeriodicalId":138249,"journal":{"name":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3281505.3281610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we aimed to construct impression estimation models of clothing patterns based on style features and Kansei metric. We first conducted a subjective evaluation experiment and a factor analysis, and quantified visual impressions of flower patterns. Following that, we used style features using CNN as image features suitable for representing flower patterns. Then, with a Lasso regression, we reduced the dimension based on Kansei metric (impression evaluation) and modeled the relationship between visual impressions and image features. Furthermore, we implemented a pattern search system using the modeled relationship.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于风格特征和感性度量的印象估计模型和模式搜索系统
在本研究中,我们旨在建立基于风格特征和感性度量的服装图案印象估计模型。我们首先进行了主观评价实验和因子分析,量化了花卉图案的视觉印象。接下来,我们使用CNN的样式特征作为适合表示花卉图案的图像特征。然后,使用Lasso回归,基于感性度量(印象评价)降维,建立视觉印象与图像特征之间的关系模型。此外,我们利用建模的关系实现了一个模式搜索系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XRCreator Indoor AR navigation using tilesets "Virtual ability simulation" to boost rehabilitation exercise performance and confidence for people with disability BoatAR An evaluation of smartphone-based interaction in AR for constrained object manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1