Forecasting variation of solar radiation and movement of cloud by sky image data

Takuo Koyasu, K. Yukita, Kastuhio Ichiyanagi, M. Minowa, M. Yoda, K. Hirose
{"title":"Forecasting variation of solar radiation and movement of cloud by sky image data","authors":"Takuo Koyasu, K. Yukita, Kastuhio Ichiyanagi, M. Minowa, M. Yoda, K. Hirose","doi":"10.1109/ICRERA.2016.7884369","DOIUrl":null,"url":null,"abstract":"This paper describes a forecasting method for photovoltaic (PV) power by using the sky image data. The presented method is able to forecast the PV power one or two hours earlier at the PV generation site. The authors have forecasted and estimated the short period variation of solar radiation by analyzing sky image data as observed by a camera. To establish the forecasting methodology for a short-period variation of the PV power, the variation in solar radiation and cloud movement were estimated using sky image data. In this study, we used the sky image obtained from a camera with a fish-eye lens, a ceilometer (quantity and height of cloud), and a pyranometer installed on the roof of the building in our campus and neighboring areas.","PeriodicalId":287863,"journal":{"name":"2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2016.7884369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper describes a forecasting method for photovoltaic (PV) power by using the sky image data. The presented method is able to forecast the PV power one or two hours earlier at the PV generation site. The authors have forecasted and estimated the short period variation of solar radiation by analyzing sky image data as observed by a camera. To establish the forecasting methodology for a short-period variation of the PV power, the variation in solar radiation and cloud movement were estimated using sky image data. In this study, we used the sky image obtained from a camera with a fish-eye lens, a ceilometer (quantity and height of cloud), and a pyranometer installed on the roof of the building in our campus and neighboring areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用天象资料预测太阳辐射变化和云的运动
本文介绍了一种利用天空影像数据预测光伏发电功率的方法。该方法能够提前1 ~ 2小时预测光伏发电现场的光伏功率。通过对相机观测到的天空影像资料进行分析,对太阳辐射的短周期变化进行了预测和估计。为了建立光伏发电短周期变化的预测方法,利用天象资料估算了太阳辐射和云的运动变化。在这项研究中,我们使用的天空图像是由安装在我们校园和邻近地区的建筑物屋顶上的带有鱼眼镜头的相机,ceilometer(云的数量和高度)和pyranometer获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity analysis of a bidirectional wireless charger for EV Averaged model of modular multilevel converter in rotating DQ frame Modular multilevel converter modulation using fundamental switching selective harmonic elimination method Linearized DQ averaged model of modular multilevel converter Maximizing investment value of small-scale PV in a smart grid environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1