{"title":"An Alternative Model of Rotation Curve that Explains Anomalous Orbital Velocity, Mass Discrepancy and Structure of Some Galaxies","authors":"P. Rivera, Marco Rivera","doi":"10.31219/osf.io/97ufw","DOIUrl":null,"url":null,"abstract":"A new model of galaxy rotation based on the cyclostrophic model of vortices found in nature is developed. The model is tested using the SPARC dataset of 175 galaxies and a smaller dataset comprising of 60 galaxies. Analysis of the datasets showed that galactic rotation can be adequately described using the observed surface brightness of galaxies and the newly developed cyclostrophic velocity model. The use of the luminosity and the inverse mass-to-light ratio in lieu of the surface brightness, also yield a very good fit of the observed and computed galaxy rotation velocity. Evidently, galactic rotation greatly depends on the cyclostrophic balance of the pressure gradient and the centrifugal forces and the seismic-induced radial expansion occurring in various stars. This is the most probable origin of the action of a single force law that has been overlooked in previous studies. Therefore, the need for a super-massive black hole at the center of galaxies or hidden dark matter can be eliminated. Attractive gravitational force can occur even without a massive black hole at the center of galaxies. There appears to be a pressure gradient force between the center and the outer parts of galaxies that sustains attraction. The cyclostrophic model appears to be the physical basis of the Tully-Fisher relation. Furthermore, the missing mass problem associated with galactic rotation can be attributed to the orbital expansion of celestial objects perturbed by seismic-induced forces. In addition, massive tremors or starquakes may create a domino effect in perturbing nearby stars along the axis of the seismic-induced force and this could result in the formation of elliptical galaxies as the orbits of seismic-perturbed neighboring stars become larger.","PeriodicalId":166360,"journal":{"name":"American Journal of Astronomy and Astrophysics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/97ufw","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A new model of galaxy rotation based on the cyclostrophic model of vortices found in nature is developed. The model is tested using the SPARC dataset of 175 galaxies and a smaller dataset comprising of 60 galaxies. Analysis of the datasets showed that galactic rotation can be adequately described using the observed surface brightness of galaxies and the newly developed cyclostrophic velocity model. The use of the luminosity and the inverse mass-to-light ratio in lieu of the surface brightness, also yield a very good fit of the observed and computed galaxy rotation velocity. Evidently, galactic rotation greatly depends on the cyclostrophic balance of the pressure gradient and the centrifugal forces and the seismic-induced radial expansion occurring in various stars. This is the most probable origin of the action of a single force law that has been overlooked in previous studies. Therefore, the need for a super-massive black hole at the center of galaxies or hidden dark matter can be eliminated. Attractive gravitational force can occur even without a massive black hole at the center of galaxies. There appears to be a pressure gradient force between the center and the outer parts of galaxies that sustains attraction. The cyclostrophic model appears to be the physical basis of the Tully-Fisher relation. Furthermore, the missing mass problem associated with galactic rotation can be attributed to the orbital expansion of celestial objects perturbed by seismic-induced forces. In addition, massive tremors or starquakes may create a domino effect in perturbing nearby stars along the axis of the seismic-induced force and this could result in the formation of elliptical galaxies as the orbits of seismic-perturbed neighboring stars become larger.