{"title":"CryptoML: Secure outsourcing of big data machine learning applications","authors":"Azalia Mirhoseini, A. Sadeghi, F. Koushanfar","doi":"10.1109/HST.2016.7495574","DOIUrl":null,"url":null,"abstract":"We present CryptoML, the first practical framework for provably secure and efficient delegation of a wide range of contemporary matrix-based machine learning (ML) applications on massive datasets. In CryptoML a delegating client with memory and computational resource constraints wishes to assign the storage and ML-related computations to the cloud servers, while preserving the privacy of its data. We first suggest the dominant components of delegation performance cost, and create a matrix sketching technique that aims at minimizing the cost by data pre-processing. We then propose a novel interactive delegation protocol based on the provably secure Shamir's secret sharing. The protocol is customized for our new sketching technique to maximize the client's resource efficiency. CryptoML shows a new trade-off between the efficiency of secure delegation and the accuracy of the ML task. Proof of concept evaluations corroborate applicability of CryptoML to datasets with billions of non-zero records.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We present CryptoML, the first practical framework for provably secure and efficient delegation of a wide range of contemporary matrix-based machine learning (ML) applications on massive datasets. In CryptoML a delegating client with memory and computational resource constraints wishes to assign the storage and ML-related computations to the cloud servers, while preserving the privacy of its data. We first suggest the dominant components of delegation performance cost, and create a matrix sketching technique that aims at minimizing the cost by data pre-processing. We then propose a novel interactive delegation protocol based on the provably secure Shamir's secret sharing. The protocol is customized for our new sketching technique to maximize the client's resource efficiency. CryptoML shows a new trade-off between the efficiency of secure delegation and the accuracy of the ML task. Proof of concept evaluations corroborate applicability of CryptoML to datasets with billions of non-zero records.