SPO: Structure Preserving Oversampling for Imbalanced Time Series Classification

Hong Cao, Xiaoli Li, D. Woon, See-Kiong Ng
{"title":"SPO: Structure Preserving Oversampling for Imbalanced Time Series Classification","authors":"Hong Cao, Xiaoli Li, D. Woon, See-Kiong Ng","doi":"10.1109/ICDM.2011.137","DOIUrl":null,"url":null,"abstract":"This paper presents a novel structure preserving over sampling (SPO) technique for classifying imbalanced time series data. SPO generates synthetic minority samples based on multivariate Gaussian distribution by estimating the covariance structure of the minority class and regularizing the unreliable eigen spectrum. By preserving the main covariance structure and intelligently creating protective variances in the trivial eigen feature dimensions, the synthetic samples expand effectively into the void area in the data space without being too closely tied with existing minority-class samples. Extensive experiments based on several public time series datasets demonstrate that our proposed SPO in conjunction with support vector machines can achieve better performances than existing over sampling methods and state-of-the-art methods in time series classification.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

This paper presents a novel structure preserving over sampling (SPO) technique for classifying imbalanced time series data. SPO generates synthetic minority samples based on multivariate Gaussian distribution by estimating the covariance structure of the minority class and regularizing the unreliable eigen spectrum. By preserving the main covariance structure and intelligently creating protective variances in the trivial eigen feature dimensions, the synthetic samples expand effectively into the void area in the data space without being too closely tied with existing minority-class samples. Extensive experiments based on several public time series datasets demonstrate that our proposed SPO in conjunction with support vector machines can achieve better performances than existing over sampling methods and state-of-the-art methods in time series classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平衡时间序列分类的结构保持过采样
本文提出了一种新的结构保持过采样(SPO)技术,用于对不平衡时间序列数据进行分类。SPO通过估计少数派类的协方差结构,对不可靠特征谱进行正则化,生成基于多元高斯分布的合成少数派样本。通过保留主协方差结构并在平凡特征维度中智能地创建保护方差,合成样本有效地扩展到数据空间中的空白区域,而不会与现有的少数类样本过于紧密地联系在一起。基于几个公开的时间序列数据集的大量实验表明,我们提出的SPO与支持向量机相结合可以在时间序列分类中获得比现有的过采样方法和最先进的方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonnegative Matrix Tri-factorization Based High-Order Co-clustering and Its Fast Implementation Helix: Unsupervised Grammar Induction for Structured Activity Recognition Partitionable Kernels for Mapping Kernels Multi-task Learning for Bayesian Matrix Factorization Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1