Delaunay space division for RBF image reconstruction

Petr Vanecek
{"title":"Delaunay space division for RBF image reconstruction","authors":"Petr Vanecek","doi":"10.1145/1925059.1925080","DOIUrl":null,"url":null,"abstract":"The Radial Basis Function method (RBF) provides a generic mathematical tool for various interpolation and smoothing problems in computer graphics and vision, such as surface reconstruction from scattered data, smoothing of noisy data, filling gaps and restoring missing data. As the radial function uses distances in the data set, it does not depend on the dimension of the problem. Thus, RBF can be used for 2D data processing (images, height fields), 3D data processing (surfaces, volumes), 4D data processing (time-varying data) or even higher.\n In this paper, we present a novel RBF based approach for reconstruction of images and height fields from highly corrupted data, which can handle large images in feasible time, while being very simple to program. Our approach uses an image partitioning via Delaunay triangulation of the dataset. The advantage of our approach is that it can be combined with fast evaluation of RBF using R-expansion [Zandifar et al. 2004] of the basis function.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1925059.1925080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Radial Basis Function method (RBF) provides a generic mathematical tool for various interpolation and smoothing problems in computer graphics and vision, such as surface reconstruction from scattered data, smoothing of noisy data, filling gaps and restoring missing data. As the radial function uses distances in the data set, it does not depend on the dimension of the problem. Thus, RBF can be used for 2D data processing (images, height fields), 3D data processing (surfaces, volumes), 4D data processing (time-varying data) or even higher. In this paper, we present a novel RBF based approach for reconstruction of images and height fields from highly corrupted data, which can handle large images in feasible time, while being very simple to program. Our approach uses an image partitioning via Delaunay triangulation of the dataset. The advantage of our approach is that it can be combined with fast evaluation of RBF using R-expansion [Zandifar et al. 2004] of the basis function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Delaunay空间分割的RBF图像重建
径向基函数方法(RBF)为计算机图形学和视觉中的各种插值和平滑问题提供了一种通用的数学工具,如从分散数据中重建表面、噪声数据的平滑、填充间隙和恢复缺失数据。由于径向函数使用数据集中的距离,它不依赖于问题的维度。因此,RBF可以用于二维数据处理(图像、高度场)、三维数据处理(曲面、体)、四维数据处理(时变数据)甚至更高。本文提出了一种新的基于RBF的图像和高度域重构方法,该方法可以在可行的时间内处理大量图像,而且编程非常简单。我们的方法通过Delaunay三角剖分对数据集进行图像分割。我们的方法的优点是,它可以与使用基函数的r -展开[Zandifar et al. 2004]的RBF快速评估相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing in 3D with reference points and polynomials Green's function solution to subsurface light transport for BRDF computation Doppler-based 3D Blood Flow Imaging and Visualization Parallel MDOM for light transport in participating media Dynamic Texture Enlargement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1