Stereotactic surgical planning using three dimensional reconstruction and artificial neural networks

Kent Wreder, Dong-Chul Park, M. Adjouadi, S. Gonzalez-Arias
{"title":"Stereotactic surgical planning using three dimensional reconstruction and artificial neural networks","authors":"Kent Wreder, Dong-Chul Park, M. Adjouadi, S. Gonzalez-Arias","doi":"10.1109/CBMS.1992.245025","DOIUrl":null,"url":null,"abstract":"Recent research into different artificial neural network structures and topologies suggests the possibility of implementing a particular application. The goal is for the neural network to represent the input function in a natural manner. The authors describe such an implementation in the field of neurosurgical planning, where a set of neural networks represents the lesion to be treated as well as the different functional regions of the brain. It is shown that this neural network structure can actively and effectively assist in the surgical planning. Emphasis is on stereotactic radiosurgery, whereby a high dose of radiation is delivered to the lesion. This modality allows for extensive implementation of the neural network features in a natural way, using Gaussian potential functions for the neural activation. The goal of decreasing the procedural risk factor in stereotactic surgery is accomplished by implementing the visual interface and a framework of artificial neural networks.<<ETX>>","PeriodicalId":197891,"journal":{"name":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1992.245025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recent research into different artificial neural network structures and topologies suggests the possibility of implementing a particular application. The goal is for the neural network to represent the input function in a natural manner. The authors describe such an implementation in the field of neurosurgical planning, where a set of neural networks represents the lesion to be treated as well as the different functional regions of the brain. It is shown that this neural network structure can actively and effectively assist in the surgical planning. Emphasis is on stereotactic radiosurgery, whereby a high dose of radiation is delivered to the lesion. This modality allows for extensive implementation of the neural network features in a natural way, using Gaussian potential functions for the neural activation. The goal of decreasing the procedural risk factor in stereotactic surgery is accomplished by implementing the visual interface and a framework of artificial neural networks.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三维重建和人工神经网络进行立体定向手术计划
最近对不同人工神经网络结构和拓扑的研究表明实现特定应用的可能性。目标是让神经网络以自然的方式表示输入函数。作者在神经外科计划领域描述了这样一种实现,其中一组神经网络代表要治疗的病变以及大脑的不同功能区域。结果表明,该神经网络结构能够积极有效地辅助手术计划。重点是立体定向放射外科,即用高剂量的辐射照射病灶。这种模式允许以自然的方式广泛实现神经网络特征,使用高斯势函数进行神经激活。通过可视化界面和人工神经网络框架的实现,降低立体定向手术中的手术风险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local motion identification and correction schemes for ultrafast CT flow studies Graphical user interface system for automatic 3-D medical image analysis GAMEES II: an environment for building probabilistic expert systems based on arrays of Bayesian belief networks A methodology for the validation of image segmentation methods Shape analysis of mammographic calcifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1