Drone Image Stitching Using Local Least Square Alignment

Qi Wan, Linbo Luo, Jun Chen, Yong Wang, Donghai Guo
{"title":"Drone Image Stitching Using Local Least Square Alignment","authors":"Qi Wan, Linbo Luo, Jun Chen, Yong Wang, Donghai Guo","doi":"10.1109/IGARSS39084.2020.9323873","DOIUrl":null,"url":null,"abstract":"This paper proposes a strategy for drone image stitching using local least square alignment, which aims to effectively stitch multiple overlapping drone images into a natural panoramic image. Existing traditional methods using simple homography cannot handle the situation that the input drone images have parallax effect, and the mosaic result always suffers from artifacts. In order to achieve natural-looking stitching results without the above limitation, we divide the proposed method into the following two steps, namely, local least square alignment and global similarity constraint. Starting from initial feature sets obtained by traditional feature extraction methods, we construct a robust alignment energy based on parallax errors to adaptively eliminate parallax effects. The energy can be efficiently minimized used least square estimate. Combined with global similarity constraint, our proposed strategy can flexibly improve the naturalness of the results. Experiments show that our stitching strategy can more effectively eliminate parallax effects and achieve natural-looking results compared to other state-of-the-art methods.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a strategy for drone image stitching using local least square alignment, which aims to effectively stitch multiple overlapping drone images into a natural panoramic image. Existing traditional methods using simple homography cannot handle the situation that the input drone images have parallax effect, and the mosaic result always suffers from artifacts. In order to achieve natural-looking stitching results without the above limitation, we divide the proposed method into the following two steps, namely, local least square alignment and global similarity constraint. Starting from initial feature sets obtained by traditional feature extraction methods, we construct a robust alignment energy based on parallax errors to adaptively eliminate parallax effects. The energy can be efficiently minimized used least square estimate. Combined with global similarity constraint, our proposed strategy can flexibly improve the naturalness of the results. Experiments show that our stitching strategy can more effectively eliminate parallax effects and achieve natural-looking results compared to other state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机图像拼接使用局部最小二乘对齐
提出了一种基于局部最小二乘对齐的无人机图像拼接策略,目的是将多幅重叠的无人机图像有效拼接成一幅自然全景图像。现有的传统方法采用简单的单应性,无法处理输入的无人机图像存在视差的情况,拼接结果容易出现伪影。为了使拼接结果不受上述限制,我们将该方法分为局部最小二乘对齐和全局相似度约束两步。从传统特征提取方法获得的初始特征集出发,构建基于视差误差的鲁棒对准能量,自适应消除视差影响。利用最小二乘估计可以有效地将能量最小化。结合全局相似度约束,可以灵活地提高搜索结果的自然度。实验表明,与其他先进的拼接方法相比,我们的拼接策略可以更有效地消除视差效果,获得更自然的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1