Multiple target tracking with constrained motion using particle filtering methods

Ioannis Kyriakides, D. Morrell, A. Papandreou-Suppappola
{"title":"Multiple target tracking with constrained motion using particle filtering methods","authors":"Ioannis Kyriakides, D. Morrell, A. Papandreou-Suppappola","doi":"10.1109/CAMAP.2005.1574190","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the constrained motion proposal (COMP) algorithm that incorporates target kinematic constraint information into a particle filter to track multiple targets. We represent deterministic or stochastic constraints on target motion as a likelihood function that is incorporated into the particle filter proposal density. Using Monte Carlo simulations, we demonstrate that this approach improves tracking performance while reducing computational cost relative to the independent partition particle filter with and without a constraint likelihood function.","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose the constrained motion proposal (COMP) algorithm that incorporates target kinematic constraint information into a particle filter to track multiple targets. We represent deterministic or stochastic constraints on target motion as a likelihood function that is incorporated into the particle filter proposal density. Using Monte Carlo simulations, we demonstrate that this approach improves tracking performance while reducing computational cost relative to the independent partition particle filter with and without a constraint likelihood function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子滤波的约束运动多目标跟踪
在本文中,我们提出了约束运动建议(COMP)算法,该算法将目标运动约束信息纳入粒子滤波器中以跟踪多个目标。我们将目标运动的确定性或随机约束表示为包含在粒子滤波建议密度中的似然函数。通过蒙特卡罗模拟,我们证明了这种方法提高了跟踪性能,同时减少了相对于有或没有约束似然函数的独立分割粒子滤波器的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft decode and forward improves cooperative communications Blind identification of under-determined mixtures based on the characteristic function: influence of the knowledge of source PDF's Recognition of the predetermined random signals involving the unknown signals Combined direction finders of point noise radiation sources in AA based on adaptive lattice filters Neural network computational technique for high-resolution remote sensing image reconstruction with system fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1