Fully polarimetric ALOS PALSAR data applications for snow and ice studies

G. Venkataraman, Gulab Singh, Y. Yamaguchi
{"title":"Fully polarimetric ALOS PALSAR data applications for snow and ice studies","authors":"G. Venkataraman, Gulab Singh, Y. Yamaguchi","doi":"10.1109/IGARSS.2010.5649401","DOIUrl":null,"url":null,"abstract":"In this study, the capability assessment of fully polarimetric L-band ALOS PALSAR data has been carried out for snow discrimination from other targets. Eigenvaluve based polarization fraction value has been determined for assessing the capability of PALSAR data for snow discrimination. Radar snow index has been developed using polarization fraction and normalized third eigenvalue of coherency matrix. It has been found that radar snow index is more robust and simple to implement that supervised classification.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5649401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, the capability assessment of fully polarimetric L-band ALOS PALSAR data has been carried out for snow discrimination from other targets. Eigenvaluve based polarization fraction value has been determined for assessing the capability of PALSAR data for snow discrimination. Radar snow index has been developed using polarization fraction and normalized third eigenvalue of coherency matrix. It has been found that radar snow index is more robust and simple to implement that supervised classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全偏振ALOS PALSAR数据应用于冰雪研究
本研究对全极化l波段ALOS PALSAR数据进行了与其他目标的积雪识别能力评估。本文确定了基于特征值的偏振分数值,用于评估PALSAR数据的积雪识别能力。利用相干矩阵的极化分数和归一化第三特征值建立了雷达积雪指数。研究发现,雷达雪指数比监督分类具有更强的鲁棒性和更简单的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One micron laser technology advancements at GSFC Progress in the validation of dual-wavelength aerosol retrieval models via airborne high spectral resolution lidar data The microasar experiment on CASIE-09 A method to estimate Snow Water Equivalent using multi-angle X-band radar observations Detection and correction of spectral and spatial misregistrations for hyperspectral data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1