High Fidelity Visualization of Large Scale Digitally Reconstructed Brain Circuitry with Signed Distance Functions

Jonas Karlsson, M. Abdellah, Sébastien Speierer, A. Foni, Samuel Lapere, F. Schürmann
{"title":"High Fidelity Visualization of Large Scale Digitally Reconstructed Brain Circuitry with Signed Distance Functions","authors":"Jonas Karlsson, M. Abdellah, Sébastien Speierer, A. Foni, Samuel Lapere, F. Schürmann","doi":"10.1109/VISUAL.2019.8933693","DOIUrl":null,"url":null,"abstract":"We explore a first proof-of-concept application for visualizing large scale digitally reconstructed brain circuitry using signed distance functions. The significance of our method is demonstrated in comparison with using implicit geometry that is limited to provide the natural look of neurons or explicit geometry that requires huge amounts of memory and has limited scalability with larger circuits.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We explore a first proof-of-concept application for visualizing large scale digitally reconstructed brain circuitry using signed distance functions. The significance of our method is demonstrated in comparison with using implicit geometry that is limited to provide the natural look of neurons or explicit geometry that requires huge amounts of memory and has limited scalability with larger circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带符号距离函数的大规模数字重建脑电路的高保真可视化
我们探索了第一个概念验证应用程序,用于使用符号距离函数可视化大规模数字重建的脑电路。与使用隐式几何相比,我们的方法的重要性得到了证明,隐式几何只能提供神经元的自然外观,而显式几何则需要大量的内存,并且在更大的电路中具有有限的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EasyPZ.js: Interaction Binding for Pan and Zoom Visualizations Uncovering Data Landscapes through Data Reconnaissance and Task Wrangling Disentangled Representation of Data Distributions in Scatterplots RuleVis: Constructing Patterns and Rules for Rule-Based Models Interactive Bicluster Aggregation in Bipartite Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1