FFSB: Fast Fibonacci Series-Based personalized PageRank on MPI

HongJun Yin, Jing Li, Yue Niu
{"title":"FFSB: Fast Fibonacci Series-Based personalized PageRank on MPI","authors":"HongJun Yin, Jing Li, Yue Niu","doi":"10.1109/ICICS.2013.6782908","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast MPI algorithm for Monte Carlo approximation PageRank vector of all the nodes in a graph, named Fast Fibonacci Series-Based Personal PageRank. In the latter paper we will call it FFSB algorithm for short. The basic ideal is very efficiently computing single random walks of a given length starting at each node in a graph. More precisely, we design FFSB, which given a graph G and a length λ, outputs a single random walk of length λ at each node in G. We will exhibit that the number of MPI iterations and machine time is better than the most efficient algorithm at present with machine time log2 λ (λ is the given walk length). The algorithm with the complexity 0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g}) is optimal among a broad family of algorithms for the problem. Also the empirical evaluation on real-life graph data crawled from Sina micro blog demonstrates that our algorithm is significantly more efficient than all the existing candidates in production parallel programing environment MPI.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a fast MPI algorithm for Monte Carlo approximation PageRank vector of all the nodes in a graph, named Fast Fibonacci Series-Based Personal PageRank. In the latter paper we will call it FFSB algorithm for short. The basic ideal is very efficiently computing single random walks of a given length starting at each node in a graph. More precisely, we design FFSB, which given a graph G and a length λ, outputs a single random walk of length λ at each node in G. We will exhibit that the number of MPI iterations and machine time is better than the most efficient algorithm at present with machine time log2 λ (λ is the given walk length). The algorithm with the complexity 0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g}) is optimal among a broad family of algorithms for the problem. Also the empirical evaluation on real-life graph data crawled from Sina micro blog demonstrates that our algorithm is significantly more efficient than all the existing candidates in production parallel programing environment MPI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于斐波那契序列的个性化网页排名
在本文中,我们提出了一种快速的MPI算法,用于蒙特卡罗逼近图中所有节点的PageRank向量,称为fast Fibonacci seriesbased Personal PageRank。在后一篇文章中,我们将其简称为FFSB算法。基本理想是非常有效地计算从图中的每个节点开始的给定长度的单个随机行走。更准确地说,我们设计了FFSB,给定一个图G和一个长度λ,在G中的每个节点上输出一个长度为λ的随机漫步。我们将证明MPI迭代次数和机器时间优于目前最有效的算法,机器时间为log2 λ (λ为给定的行走长度)。复杂度为0.72022 × log2 λ × (g + max {L + 2 × o, 2 × g})的算法是解决该问题的众多算法中的最优算法。此外,对从新浪微博抓取的真实图形数据的实证评估表明,我们的算法比生产并行编程环境MPI中现有的所有候选算法都要高效得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cubic-based 3-D localization for wireless sensor networks Using PCA algorithm to refine the results of internet traffic identification Recognizing trees at a distance with discriminative deep feature learning A random increasing sequence hash chain and smart card-based remote user authentication scheme Two dimension nonnegative partial least squares for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1