{"title":"Electron mobility edge in amorphous polyethylene","authors":"M. Unge","doi":"10.1109/ICD.2016.7547744","DOIUrl":null,"url":null,"abstract":"The conduction mechanism in a material is to a large extent determined by the nature of the electronic states. Localized states give hopping conduction and delocalized states band transport. In amorphous materials there may be a transition from localized states at the band edges to delocalized states higher up in the band. Here we use linear scaling density functional theory and a percolation method to determine electron mobility in amorphous polyethylene. The electron mobility edge is determined to ~ 0.2 eV.","PeriodicalId":306397,"journal":{"name":"2016 IEEE International Conference on Dielectrics (ICD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD.2016.7547744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The conduction mechanism in a material is to a large extent determined by the nature of the electronic states. Localized states give hopping conduction and delocalized states band transport. In amorphous materials there may be a transition from localized states at the band edges to delocalized states higher up in the band. Here we use linear scaling density functional theory and a percolation method to determine electron mobility in amorphous polyethylene. The electron mobility edge is determined to ~ 0.2 eV.