Multi-time granularity subway line network short-time OD passenger flow forecasting based on LightGBM model

Heng Zhang, Wei Xiao, MIngjiao Zhang
{"title":"Multi-time granularity subway line network short-time OD passenger flow forecasting based on LightGBM model","authors":"Heng Zhang, Wei Xiao, MIngjiao Zhang","doi":"10.1117/12.2672715","DOIUrl":null,"url":null,"abstract":"In order to accurately obtain the short-time OD passenger flow distribution of the subway line network, so as to efficiently coordinate the transportation capacity and passenger demand, a multi-time granularity subway line network short-time OD passenger flow prediction model based on LightGBM was constructed by combining the idea of ensemble learning. The model uses the subway automatic ticket sales and inspection data to analyze the temporal and spatial distribution characteristics of OD passenger flow on the line network, introduces a variety of temporal and spatial influencing factors to train and predict the data of the whole network, and studies the relationship between the prediction accuracy of the subway line network OD passenger flow and the time granularity. relationship between. Taking the Suzhou subway as an example, the results show that: compared with other models, the model can not only effectively reduce the prediction error, but also can effectively fit the peak passenger flow, and improve the accuracy of short-time OD passenger flow prediction of the subway network.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2672715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to accurately obtain the short-time OD passenger flow distribution of the subway line network, so as to efficiently coordinate the transportation capacity and passenger demand, a multi-time granularity subway line network short-time OD passenger flow prediction model based on LightGBM was constructed by combining the idea of ensemble learning. The model uses the subway automatic ticket sales and inspection data to analyze the temporal and spatial distribution characteristics of OD passenger flow on the line network, introduces a variety of temporal and spatial influencing factors to train and predict the data of the whole network, and studies the relationship between the prediction accuracy of the subway line network OD passenger flow and the time granularity. relationship between. Taking the Suzhou subway as an example, the results show that: compared with other models, the model can not only effectively reduce the prediction error, but also can effectively fit the peak passenger flow, and improve the accuracy of short-time OD passenger flow prediction of the subway network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LightGBM模型的多时间粒度地铁线路网络短时OD客流预测
该模型利用地铁自动售票和检票数据分析线路网络OD客流的时空分布特征,引入多种时空影响因素对全网数据进行训练和预测,研究地铁线路网络OD客流预测精度与时间粒度的关系。之间的关系。以苏州地铁为例,结果表明:与其他模型相比,该模型不仅能有效降低预测误差,而且能有效拟合高峰客流,提高地铁网络短时OD客流预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on intelligent risk control of banks based on BP neural network Drainage pipe defect identification based on convolutional neural network An exoskeleton rehabilitation system to train hand function after stroke Research on TCP congestion window smoothing control algorithm based on traffic awareness Research on digital twin-based capacitive voltage transformer operating condition monitoring method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1