Moment-Based Image Normalization for Handwritten Text Recognition

M. Kozielski, Jens Forster, H. Ney
{"title":"Moment-Based Image Normalization for Handwritten Text Recognition","authors":"M. Kozielski, Jens Forster, H. Ney","doi":"10.1109/ICFHR.2012.236","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the concept of moment-based normalization of images from digit recognition to the recognition of handwritten text. Image moments provide robust estimates for text characteristics such as size and position of words within an image. For handwriting recognition the normalization procedure is applied to image slices independently. Additionally, a novel moment-based algorithm for line-thickness normalization is presented. The proposed normalization methods are evaluated on the RIMES database of French handwriting and the IAM database of English handwriting. For RIMES we achieve an improvement from 16.7% word error rate to 13.4% and for IAM from 46.6% to 37.3%.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

In this paper, we extend the concept of moment-based normalization of images from digit recognition to the recognition of handwritten text. Image moments provide robust estimates for text characteristics such as size and position of words within an image. For handwriting recognition the normalization procedure is applied to image slices independently. Additionally, a novel moment-based algorithm for line-thickness normalization is presented. The proposed normalization methods are evaluated on the RIMES database of French handwriting and the IAM database of English handwriting. For RIMES we achieve an improvement from 16.7% word error rate to 13.4% and for IAM from 46.6% to 37.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于矩的手写体文本识别图像归一化
本文将基于矩的图像归一化的概念从数字识别扩展到手写体文本的识别。图像矩提供了对文本特征(如图像中单词的大小和位置)的可靠估计。对于手写识别,将归一化过程单独应用于图像切片。此外,提出了一种新的基于矩的线厚归一化算法。在RIMES法语手写体数据库和IAM英语手写体数据库上对所提出的规范化方法进行了评价。对于RIMES,我们将单词错误率从16.7%提高到13.4%,而对于IAM,我们将错误率从46.6%提高到37.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Off-Line Features Integration for On-Line Handwriting Graphemes Modeling Improvement Analysis of Different Subspace Mixture Models in Handwriting Recognition Structural Learning for Writer Identification in Offline Handwriting A Study of Handwritten Characters by Shape Descriptors: Doping Using the Freeman Code Dynamic Programming Matching with Global Features for Online Character Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1