Inertial Measurement Unit based Human Action Recognition Dataset for Cyclic Overhead Car Assembly and Disassembly

J. Kuschan, H. Filaretov, J. Krüger
{"title":"Inertial Measurement Unit based Human Action Recognition Dataset for Cyclic Overhead Car Assembly and Disassembly","authors":"J. Kuschan, H. Filaretov, J. Krüger","doi":"10.1109/INDIN51773.2022.9976078","DOIUrl":null,"url":null,"abstract":"Motion datasets in industrial environments are essential for the research on human-robot interaction and new exoskeleton control. Currently, a lot of Activities of Daily Living (ADL) datasets are available for researchers, but only a few target an industrial context. This paper presents a dataset for a semi-industrial Overhead Car Assembly (OCA) task consisting of synchronized video and 9-Degrees of Freedom (DOF) Inertial Measurement Unit (IMU) data. The dataset was recorded with a soft-robotic exoskeleton equipped with 4 IMUs covering the upper body. It has a minimum sampling rate of 20 Hz, lasts approximately 360 minutes and comprises of 282 cycles of a realistic industrial assembly task. The annotations consist of 6 mid-level actions and an additional Null class. Five different test subjects performed the task without specific instructions on how to assemble the used car shielding. In this paper, we describe the dataset, set guidelines for using the data in supervised learning approaches, and analyze the labeling error caused by the labeler onto the dataset. We also compare different state-of-the-art neural networks to set the first benchmark and achieve a weighted F1 score of 0.717.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motion datasets in industrial environments are essential for the research on human-robot interaction and new exoskeleton control. Currently, a lot of Activities of Daily Living (ADL) datasets are available for researchers, but only a few target an industrial context. This paper presents a dataset for a semi-industrial Overhead Car Assembly (OCA) task consisting of synchronized video and 9-Degrees of Freedom (DOF) Inertial Measurement Unit (IMU) data. The dataset was recorded with a soft-robotic exoskeleton equipped with 4 IMUs covering the upper body. It has a minimum sampling rate of 20 Hz, lasts approximately 360 minutes and comprises of 282 cycles of a realistic industrial assembly task. The annotations consist of 6 mid-level actions and an additional Null class. Five different test subjects performed the task without specific instructions on how to assemble the used car shielding. In this paper, we describe the dataset, set guidelines for using the data in supervised learning approaches, and analyze the labeling error caused by the labeler onto the dataset. We also compare different state-of-the-art neural networks to set the first benchmark and achieve a weighted F1 score of 0.717.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于惯性测量单元的循环架空汽车拆装人体动作识别数据集
工业环境中的运动数据集对于研究人机交互和新型外骨骼控制至关重要。目前,研究人员可以使用大量的日常生活活动(ADL)数据集,但只有少数针对工业环境。本文提出了一个由同步视频和9自由度惯性测量单元(IMU)数据组成的半工业高架汽车装配(OCA)任务数据集。数据集是用一个软机器人外骨骼记录的,该外骨骼配备了覆盖上半身的4个imu。它的最小采样率为20 Hz,持续约360分钟,由282个周期的实际工业装配任务组成。注释由6个中级动作和一个额外的Null类组成。五个不同的测试对象在没有具体说明如何组装二手车屏蔽的情况下完成了这项任务。在本文中,我们描述了数据集,设置了在监督学习方法中使用数据的指导方针,并分析了由标注器对数据集造成的标注错误。我们还比较了不同的最先进的神经网络来设置第一个基准,并获得了0.717的加权F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Board Secretaries’ Q&R Data Offset Estimation Based on ARIMA-LSTM for Time Synchronization in Single Twisted Pair Ethernet Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems Fuzzy PID Control for Multi-joint Robotic Arm Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1