{"title":"Neighborhood Optimization Method for Shaping Bode Plot With Larger Phase Margin","authors":"Bo Shang, Chengdong Wu, Y. Chen","doi":"10.1115/detc2019-97288","DOIUrl":null,"url":null,"abstract":"\n When controlling complex non-linear systems, classic flat-phase specification (FPS) method for tuning fractional order controllers employs graphic method. However, following this step of graphic method, the tuning method cannot work automatically. In this study, a novel optimization method is employed to enable it to work automatically. An approximation is used to avoid solving derivatives, thereby simplify computation of the method. Frequency-domain analysis reveals that, compared with the classic FPS method, this method is capable of covering more conditions, especially those with larger phase margin. A linear model and a non-linear model (Simscape) are used to demonstrate that the proposed method can ensure both transient performance and robustness. For the relevant working folder, please refer to: http://bit.ly/npm-simscape-code. For video demonstrations, please click: http://bit.ly/npm_simscape_video.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When controlling complex non-linear systems, classic flat-phase specification (FPS) method for tuning fractional order controllers employs graphic method. However, following this step of graphic method, the tuning method cannot work automatically. In this study, a novel optimization method is employed to enable it to work automatically. An approximation is used to avoid solving derivatives, thereby simplify computation of the method. Frequency-domain analysis reveals that, compared with the classic FPS method, this method is capable of covering more conditions, especially those with larger phase margin. A linear model and a non-linear model (Simscape) are used to demonstrate that the proposed method can ensure both transient performance and robustness. For the relevant working folder, please refer to: http://bit.ly/npm-simscape-code. For video demonstrations, please click: http://bit.ly/npm_simscape_video.