Methodology to determine the age of the text’s author based on readability and lexical diversity metrics

A. A. Sobolev, A. Fedotova, A. Kurtukova, A. Romanov, A. Shelupanov
{"title":"Methodology to determine the age of the text’s author based on readability and lexical diversity metrics","authors":"A. A. Sobolev, A. Fedotova, A. Kurtukova, A. Romanov, A. Shelupanov","doi":"10.21293/1818-0442-2022-25-2-45-52","DOIUrl":null,"url":null,"abstract":"The article describes the approaches to determining the age of the author of an anonymous text written in Russian. The fundamental works of the subject area are considered, both proven approaches (support vector machine, naive Bayes classifier, convolutional and recurrent neural networks) and modern methods (fastText, BERT) are implemented. The study used its own data set containing 1,5 million comments from social media users. A separate experiment is devoted to assessing the impact on the classification accuracy of various text vectorization methods. As a result of a series of experiments aimed at evaluating the efficiency of the methods used and selecting informative features, a model was obtained that can predict the age of the author of an anonymous text with an accuracy of 83.2%.","PeriodicalId":273068,"journal":{"name":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21293/1818-0442-2022-25-2-45-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The article describes the approaches to determining the age of the author of an anonymous text written in Russian. The fundamental works of the subject area are considered, both proven approaches (support vector machine, naive Bayes classifier, convolutional and recurrent neural networks) and modern methods (fastText, BERT) are implemented. The study used its own data set containing 1,5 million comments from social media users. A separate experiment is devoted to assessing the impact on the classification accuracy of various text vectorization methods. As a result of a series of experiments aimed at evaluating the efficiency of the methods used and selecting informative features, a model was obtained that can predict the age of the author of an anonymous text with an accuracy of 83.2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据可读性和词汇多样性指标确定文本作者年龄的方法
这篇文章描述了确定用俄语写的匿名文本作者年龄的方法。考虑了主题领域的基础工作,实现了已证明的方法(支持向量机,朴素贝叶斯分类器,卷积和循环神经网络)和现代方法(fastText, BERT)。该研究使用了自己的数据集,其中包含来自社交媒体用户的150万条评论。一个单独的实验致力于评估各种文本矢量化方法对分类精度的影响。通过一系列旨在评估所使用方法的效率和选择信息特征的实验,获得了一个可以预测匿名文本作者年龄的模型,准确率为83.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software to compare images of the vegetation index obtained by satellite devices and unmanned aircraft Conceptual model of software to develop acoustic emission diagnostic system New challenges: stochastic threats to national security Time-pulse method of single-phase half-bridge inverter control in formation of the harmonic load current Gleicher's formula in solving the problem of plagiarism and managing students' research work
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1