Design-space exploration and runtime resource management for multicores

Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano
{"title":"Design-space exploration and runtime resource management for multicores","authors":"Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano","doi":"10.1145/2514641.2514647","DOIUrl":null,"url":null,"abstract":"Application-specific multicore architectures are usually designed by using a configurable platform in which a set of parameters can be tuned to find the best trade-off in terms of the selected figures of merit (such as energy, delay, and area). This multi-objective optimization phase is called Design-Space Exploration (DSE). Among the design-time (hardware) configurable parameters we can find the memory subsystem configuration (such as cache size and associativity) and other architectural parameters such as the instruction-level parallelism of the system processors. Among the runtime (software) configurable parameters we can find the degree of task-level parallelism associated with each application running on the platform.\n The contribution of this article is twofold; first, we introduce an evolutionary (NSGA-II-based) methodology for identifying a hardware configuration which is robust with respect to applications and corresponding datasets. Second, we introduce a novel runtime heuristic that exploits design-time identified operating points to provide guaranteed throughput to each application. Experimental results show that the design-time/runtime combined approach improves the runtime performance of the system with respect to existing reference techniques, while meeting the overall power budget.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2514641.2514647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Application-specific multicore architectures are usually designed by using a configurable platform in which a set of parameters can be tuned to find the best trade-off in terms of the selected figures of merit (such as energy, delay, and area). This multi-objective optimization phase is called Design-Space Exploration (DSE). Among the design-time (hardware) configurable parameters we can find the memory subsystem configuration (such as cache size and associativity) and other architectural parameters such as the instruction-level parallelism of the system processors. Among the runtime (software) configurable parameters we can find the degree of task-level parallelism associated with each application running on the platform. The contribution of this article is twofold; first, we introduce an evolutionary (NSGA-II-based) methodology for identifying a hardware configuration which is robust with respect to applications and corresponding datasets. Second, we introduce a novel runtime heuristic that exploits design-time identified operating points to provide guaranteed throughput to each application. Experimental results show that the design-time/runtime combined approach improves the runtime performance of the system with respect to existing reference techniques, while meeting the overall power budget.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核的设计空间探索和运行时资源管理
特定于应用程序的多核架构通常是通过使用一个可配置的平台来设计的,在这个平台中,可以对一组参数进行调优,以便根据所选的优点(如能量、延迟和面积)找到最佳折衷方案。这个多目标优化阶段被称为设计-空间探索(DSE)。在设计时(硬件)可配置参数中,我们可以找到内存子系统配置(如缓存大小和关联性)和其他架构参数,如系统处理器的指令级并行性。在运行时(软件)可配置参数中,我们可以找到与平台上运行的每个应用程序相关的任务级并行度。这篇文章的贡献是双重的;首先,我们介绍了一种进化的(基于nsga - ii的)方法,用于识别对应用程序和相应数据集具有鲁棒性的硬件配置。其次,我们引入了一种新的运行时启发式方法,利用设计时确定的操作点为每个应用程序提供有保证的吞吐量。实验结果表明,相对于现有的参考技术,设计时/运行时组合方法在满足总体功耗预算的前提下,提高了系统的运行时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration for Embedded Keyword Spotting: Tutorial and Survey Adaptive Computation Reuse for Energy-Efficient Training of Deep Neural Networks Horizontal Auto-Scaling for Multi-Access Edge Computing Using Safe Reinforcement Learning IoT-Fog-Cloud Centric Earthquake Monitoring and Prediction Horizontal Side-Channel Vulnerabilities of Post-Quantum Key Exchange and Encapsulation Protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1