Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano
{"title":"Design-space exploration and runtime resource management for multicores","authors":"Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano","doi":"10.1145/2514641.2514647","DOIUrl":null,"url":null,"abstract":"Application-specific multicore architectures are usually designed by using a configurable platform in which a set of parameters can be tuned to find the best trade-off in terms of the selected figures of merit (such as energy, delay, and area). This multi-objective optimization phase is called Design-Space Exploration (DSE). Among the design-time (hardware) configurable parameters we can find the memory subsystem configuration (such as cache size and associativity) and other architectural parameters such as the instruction-level parallelism of the system processors. Among the runtime (software) configurable parameters we can find the degree of task-level parallelism associated with each application running on the platform.\n The contribution of this article is twofold; first, we introduce an evolutionary (NSGA-II-based) methodology for identifying a hardware configuration which is robust with respect to applications and corresponding datasets. Second, we introduce a novel runtime heuristic that exploits design-time identified operating points to provide guaranteed throughput to each application. Experimental results show that the design-time/runtime combined approach improves the runtime performance of the system with respect to existing reference techniques, while meeting the overall power budget.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2514641.2514647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Application-specific multicore architectures are usually designed by using a configurable platform in which a set of parameters can be tuned to find the best trade-off in terms of the selected figures of merit (such as energy, delay, and area). This multi-objective optimization phase is called Design-Space Exploration (DSE). Among the design-time (hardware) configurable parameters we can find the memory subsystem configuration (such as cache size and associativity) and other architectural parameters such as the instruction-level parallelism of the system processors. Among the runtime (software) configurable parameters we can find the degree of task-level parallelism associated with each application running on the platform.
The contribution of this article is twofold; first, we introduce an evolutionary (NSGA-II-based) methodology for identifying a hardware configuration which is robust with respect to applications and corresponding datasets. Second, we introduce a novel runtime heuristic that exploits design-time identified operating points to provide guaranteed throughput to each application. Experimental results show that the design-time/runtime combined approach improves the runtime performance of the system with respect to existing reference techniques, while meeting the overall power budget.