Indoor localization by particle map matching

Karim El Mokhtari, S. Reboul, J. Choquel, B. Amami, M. Benjelloun
{"title":"Indoor localization by particle map matching","authors":"Karim El Mokhtari, S. Reboul, J. Choquel, B. Amami, M. Benjelloun","doi":"10.1109/CIST.2016.7804999","DOIUrl":null,"url":null,"abstract":"This article presents the implementation of an indoor localization approach that combines map matching and a circular particle filter defined in a Bayesian framework. The technique relies only on velocity and heading observations coupled with a map of the road network. No prior knowledge of the initial position is given. A circular distribution is used to match the vehicle's heading with the roads direction. This allows to detect turns and provide a more accurate position estimate. The algorithm is assessed with a synthetic dataset in a real context.","PeriodicalId":196827,"journal":{"name":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2016.7804999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article presents the implementation of an indoor localization approach that combines map matching and a circular particle filter defined in a Bayesian framework. The technique relies only on velocity and heading observations coupled with a map of the road network. No prior knowledge of the initial position is given. A circular distribution is used to match the vehicle's heading with the roads direction. This allows to detect turns and provide a more accurate position estimate. The algorithm is assessed with a synthetic dataset in a real context.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子图匹配的室内定位
本文介绍了一种室内定位方法的实现,该方法结合了地图匹配和贝叶斯框架中定义的圆形粒子滤波器。该技术仅依赖于速度和航向观测以及路网地图。没有给出初始位置的先验知识。一个圆形分布被用来匹配车辆的方向与道路的方向。这允许检测转弯并提供更准确的位置估计。用一个真实环境下的合成数据集对该算法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantically enhanced term frequency based on word embeddings for Arabic information retrieval Automatic generation of TestNG tests cases from UML sequence diagrams in Scrum process Coordination by sharing demand forecasts in a supply chain using game theoretic approach Robust approach for textured image clustering High speed efficient FPGA implementation of pipelined AES S-Box
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1