Named Entity Recognition using Multiple Smaller LSTM in Parallel Recurrent Neural Networks

P. Suhas Reddy, Dheeraj Sai Madhalam, Pavan Kumar Kundeti
{"title":"Named Entity Recognition using Multiple Smaller LSTM in Parallel Recurrent Neural Networks","authors":"P. Suhas Reddy, Dheeraj Sai Madhalam, Pavan Kumar Kundeti","doi":"10.1109/IConSCEPT57958.2023.10170554","DOIUrl":null,"url":null,"abstract":"In recent years, End-to-End NER with Bidirectional Long-Short-Term Memory (BiLSTM) has attracted increasing attention. However, it remains a great challenge for BiLSTM to have parallel computing, extensive dependencies, and single-function spatial mapping. We propose a deep neural network model based on a parallel computing self-attention mechanism and parallel recurrent neural networks to address these problems. We only use a small amount of BiLSTM to capture the time series of texts and then we use the self-care mechanism, which allows parallel calculations to capture wide-range dependencies.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, End-to-End NER with Bidirectional Long-Short-Term Memory (BiLSTM) has attracted increasing attention. However, it remains a great challenge for BiLSTM to have parallel computing, extensive dependencies, and single-function spatial mapping. We propose a deep neural network model based on a parallel computing self-attention mechanism and parallel recurrent neural networks to address these problems. We only use a small amount of BiLSTM to capture the time series of texts and then we use the self-care mechanism, which allows parallel calculations to capture wide-range dependencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行递归神经网络中基于多个小LSTM的命名实体识别
近年来,具有双向长短期记忆(BiLSTM)的端到端NER受到越来越多的关注。然而,并行计算、广泛的依赖关系和单一功能的空间映射仍然是BiLSTM面临的巨大挑战。我们提出了一种基于并行计算自注意机制和并行递归神经网络的深度神经网络模型来解决这些问题。我们只使用少量的BiLSTM来捕获文本的时间序列,然后我们使用自我照顾机制,它允许并行计算来捕获大范围的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three Port Full Bridge PFC Converter for Hybrid AC/DC/DC System with Fuzzy Logic Control ESH: A Non-Monotonic Activation Function For Image Classification Image Classification using Quantum Convolutional Neural Network Machine Learning Based Predictive Model for Intrusion Detection EV Sahayak: Android Assistance App for Electric Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1