Time Series Prediction Via Recurrent Neural Networks with the Information Bottleneck Principle

Duo Xu, F. Fekri
{"title":"Time Series Prediction Via Recurrent Neural Networks with the Information Bottleneck Principle","authors":"Duo Xu, F. Fekri","doi":"10.1109/SPAWC.2018.8445943","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for probabilistic time series prediction based on Recurrent Information Bottleneck (RIB). We propose to incorporate the stochastic latent states for modeling complex and non-linear time series optimized by RIB objective. Compared with previous work, the proposed method can yield better prediction and uncertainty estimation. It's built on the extension of information bottleneck principle to recurrent setting, to find the stochastic latent state maximally informative about the target with low complexity. The experiments over real-world datasets show the proposed method can outperform the state-of-the-art prediction performance on single and multi-dimensional data.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a novel method for probabilistic time series prediction based on Recurrent Information Bottleneck (RIB). We propose to incorporate the stochastic latent states for modeling complex and non-linear time series optimized by RIB objective. Compared with previous work, the proposed method can yield better prediction and uncertainty estimation. It's built on the extension of information bottleneck principle to recurrent setting, to find the stochastic latent state maximally informative about the target with low complexity. The experiments over real-world datasets show the proposed method can outperform the state-of-the-art prediction performance on single and multi-dimensional data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息瓶颈原理的递归神经网络时间序列预测
本文提出了一种基于循环信息瓶颈(RIB)的概率时间序列预测方法。我们提出将随机潜在状态纳入到由RIB目标优化的复杂非线性时间序列的建模中。与以往的研究相比,本文提出的方法能够更好地预测和估计不确定性。它建立在将信息瓶颈原理推广到循环设置的基础上,以寻找对目标信息信息量最大、复杂度较低的随机潜在状态。在实际数据集上的实验表明,所提出的方法在单维度和多维数据上的预测性能都优于当前最先进的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1