Estimation of Needle Puncturing Form Based on Force Data during Slight Needle Movement

T. Matsuno, Hikaru Murakami, T. Kamegawa, Takaaki Miyamoto, Nanako Sakai, M. Minami, T. Hiraki
{"title":"Estimation of Needle Puncturing Form Based on Force Data during Slight Needle Movement","authors":"T. Matsuno, Hikaru Murakami, T. Kamegawa, Takaaki Miyamoto, Nanako Sakai, M. Minami, T. Hiraki","doi":"10.1109/ismr48346.2021.9661566","DOIUrl":null,"url":null,"abstract":"We focused on a medical procedure, known as interventional radiology (IR), as the target of robotizing medical surgeries. IR is a general term for treatments that use devices to visualize patients’ bodies. Our developed robot, known as Zerobot, specializes in inserting a needle into patients under computer tomography (CT) guidance during surgery. Its surgery is less invasive, and effective in treating small cancer tumors by controlling the temperature of the tip of the inserted needle. Zerobot is originally designed to be remotely controlled by doctors, and has confirmed its surgical ability through first-in-human feasibility trials in 2018. As a current issue, we focus on the supporting function for the operator during the surgery. In an experiment with an animal, Zerobot could not insert the needle into the animal during IR surgery if the needle were bent. Thus, in this study, we aim to make the robot function automatically so that the needle does not bend during surgery. As the first step, we propose a method for estimating the form of the needle using a force sensor. There are three types of needle forms to be classified. The proposed method can distinguish these needle forms by measuring the difference in force sensor data when slightly moving the needle root. In addition, we experimented to confirm the effectiveness of the proposed method.","PeriodicalId":405817,"journal":{"name":"2021 International Symposium on Medical Robotics (ISMR)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Medical Robotics (ISMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismr48346.2021.9661566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We focused on a medical procedure, known as interventional radiology (IR), as the target of robotizing medical surgeries. IR is a general term for treatments that use devices to visualize patients’ bodies. Our developed robot, known as Zerobot, specializes in inserting a needle into patients under computer tomography (CT) guidance during surgery. Its surgery is less invasive, and effective in treating small cancer tumors by controlling the temperature of the tip of the inserted needle. Zerobot is originally designed to be remotely controlled by doctors, and has confirmed its surgical ability through first-in-human feasibility trials in 2018. As a current issue, we focus on the supporting function for the operator during the surgery. In an experiment with an animal, Zerobot could not insert the needle into the animal during IR surgery if the needle were bent. Thus, in this study, we aim to make the robot function automatically so that the needle does not bend during surgery. As the first step, we propose a method for estimating the form of the needle using a force sensor. There are three types of needle forms to be classified. The proposed method can distinguish these needle forms by measuring the difference in force sensor data when slightly moving the needle root. In addition, we experimented to confirm the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于针轻微运动力数据的针穿刺形式估计
我们专注于一种医疗程序,被称为介入放射学(IR),作为机器人化医疗手术的目标。IR是一种使用设备可视化病人身体的治疗方法的总称。我们开发的机器人Zerobot专门在手术过程中在计算机断层扫描(CT)的指导下将针插入患者体内。它的手术侵入性较小,通过控制插入针头尖端的温度,可以有效治疗小的癌症肿瘤。Zerobot最初是为医生远程控制而设计的,并于2018年通过首次人体可行性试验证实了其手术能力。作为当前的问题,我们关注的是手术过程中对操作者的支持功能。在一项动物实验中,Zerobot无法在红外线手术期间将针头插入动物体内,如果针头是弯曲的。因此,在本研究中,我们的目标是使机器人自动工作,使针头在手术过程中不会弯曲。作为第一步,我们提出了一种使用力传感器估计针形的方法。针的形状有三种。所提出的方法可以通过测量轻微移动针根时力传感器数据的差异来区分这些针形。此外,我们还通过实验验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOPS: A Modular and Open Platform for Surgical Robotics Research Lymph Node Detection Using Robot Assisted Electrical Impedance Scanning and an Artificial Neural Network Image-Guided Optimization of Robotic Catheters for Patient-Specific Endovascular Intervention Surgical Skill Evaluation From Robot-Assisted Surgery Recordings Learning Soft-Tissue Simulation from Models and Observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1