An Efficient Link Prediction Method using Community Structures

Setareh Mokhtari, Hadi Shakibian
{"title":"An Efficient Link Prediction Method using Community Structures","authors":"Setareh Mokhtari, Hadi Shakibian","doi":"10.1109/IKT54664.2021.9685400","DOIUrl":null,"url":null,"abstract":"The problem of link prediction/recommendation requires to evaluate the scores of $O(n^{2})$ node pairs. While this exhaustive search could be computationally very expensive, it might also produces many zero links scores. In this paper, we propose a simple, efficient, and scalable link prediction method based on network communities. Given a complex network with community structures, the global link prediction problem is divided into several sub-problems. Each sub-problem is respon-sible for performing link prediction inside each community. The outputs of the sub-problems are combined to the final high-scored links. The results on several complex networks show the efficiency of the proposed method without sacrificing its prediction accuracy.","PeriodicalId":274571,"journal":{"name":"2021 12th International Conference on Information and Knowledge Technology (IKT)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT54664.2021.9685400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of link prediction/recommendation requires to evaluate the scores of $O(n^{2})$ node pairs. While this exhaustive search could be computationally very expensive, it might also produces many zero links scores. In this paper, we propose a simple, efficient, and scalable link prediction method based on network communities. Given a complex network with community structures, the global link prediction problem is divided into several sub-problems. Each sub-problem is respon-sible for performing link prediction inside each community. The outputs of the sub-problems are combined to the final high-scored links. The results on several complex networks show the efficiency of the proposed method without sacrificing its prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于社团结构的有效链路预测方法
链接预测/推荐问题需要评估$O(n^{2})$节点对的分数。虽然这种穷举搜索在计算上可能非常昂贵,但它也可能产生许多零链接分数。本文提出了一种简单、高效、可扩展的基于网络社区的链路预测方法。给定一个具有社团结构的复杂网络,将全局链路预测问题划分为若干子问题。每个子问题负责在每个社区内执行链路预测。子问题的输出被组合到最终的高分链路。在多个复杂网络上的实验结果表明,该方法在不牺牲预测精度的前提下,具有较高的预测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart City Standardized Evaluation: Use Case of Mashhad Sparse Beamforming Design for Non-Coherent UD-CRAN with mm-Wave Fronthaul Links Improving Fog Computing Scalability in Software Defined Network using Critical Requests Prediction in IoT SBST challenges from the perspective of the test techniques User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1