Early Warning Condition Transient Stability on South Sulawesi System using Extreme Learning Machine

B. A. Ashad, I. Gunadin, A. Siswanto, Yusran
{"title":"Early Warning Condition Transient Stability on South Sulawesi System using Extreme Learning Machine","authors":"B. A. Ashad, I. Gunadin, A. Siswanto, Yusran","doi":"10.1109/EIConCIT.2018.8878568","DOIUrl":null,"url":null,"abstract":"The electrical systems, the addition of loads can result in fewer stability limits, if there is interference, it can cause black out. In this study analyzing early warning, by observing the limits of stability in the event of a disturbance before black out in the South Sulawesi electricity system. This study observed an early warning system consisting of 44 buses and 15 generators using a Voltage stability margin (VSM) in the event of a disruption. From the training data about each disruption from various buses that occur then learning to use Extreme Learning (ELM) engines is used to detect early warnings during transient conditions. From the ELM simulation results can work quickly 0.0001 and 0.0024 and the error value is low so that it can be known before a blackout occurs.","PeriodicalId":424909,"journal":{"name":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConCIT.2018.8878568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electrical systems, the addition of loads can result in fewer stability limits, if there is interference, it can cause black out. In this study analyzing early warning, by observing the limits of stability in the event of a disturbance before black out in the South Sulawesi electricity system. This study observed an early warning system consisting of 44 buses and 15 generators using a Voltage stability margin (VSM) in the event of a disruption. From the training data about each disruption from various buses that occur then learning to use Extreme Learning (ELM) engines is used to detect early warnings during transient conditions. From the ELM simulation results can work quickly 0.0001 and 0.0024 and the error value is low so that it can be known before a blackout occurs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极限学习机的南苏拉威西系统暂态稳定预警
对电力系统来说,负荷的增加会导致稳定性限制的减少,如果有干扰,就会造成停电。本研究通过观察南苏拉威西电力系统在停电前发生扰动时的稳定性极限,对预警进行分析。本研究观察了一个由44个母线和15个发电机组成的预警系统,该系统使用电压稳定裕度(VSM)来处理中断事件。从各种公共汽车发生的每次中断的训练数据中,学习使用极限学习(ELM)引擎来检测瞬态条件下的早期预警。从ELM仿真结果可以快速工作0.0001和0.0024,并且误差值很低,因此可以在停电发生之前知道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Zoning, Histogram, and Structural Methods to Classify Sundanese Characters from Handwriting Medicine Stock Forecasting Using Least Square Method Sentiment Analysis of Product Reviews using Naive Bayes Algorithm: A Case Study [EIConCIT 2018 Cover Page] Keynote Speech 3 Internet of Things (IoT) Technology For Star Fruit Plantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1