Hyperoxia elevates Cu,Zn-superoxide dismutase of endothelial cells as detected by a sensitive ELISA.

Enzyme Pub Date : 1992-01-01 DOI:10.1159/000468787
S K Das, B L Fanburg
{"title":"Hyperoxia elevates Cu,Zn-superoxide dismutase of endothelial cells as detected by a sensitive ELISA.","authors":"S K Das,&nbsp;B L Fanburg","doi":"10.1159/000468787","DOIUrl":null,"url":null,"abstract":"<p><p>An enzyme-linked immunosorbent assay (ELISA) was developed for the measurement of bovine Cu,Zn-SOD. Accuracy of the ELISA and specificity of the antibody for cell-free extracts was established by: (1) measurement of antigen levels of bovine endothelial cell extracts reconstituted with pure antigen, and (2) immunoblotting with affinity purified antibody. The ELISA was highly sensitive and 0.05-0.10 ng of pure antigen could be accurately detected, which allowed the measurement of Cu,Zn-SOD in as few as 250 endothelial cells. With utilization of the ELISA for detection, DEAE-cellulose chromatography patterns of endothelial cell Cu,Zn-SOD overlapped those of pure bovine erythrocyte Cu,Zn-SOD. Exposure of cells in culture to 80% O2 for 48 h increased the relative abundance of the Cu,Zn-SOD as measured by the ELISA by 1.8-fold. Thus, endothelial cells in culture respond to hyperoxia by enhanced production of Cu,Zn-SOD protein. The ELISA developed in this study may be useful for assessing other factors that regulate cellular production of Cu,Zn-SOD.</p>","PeriodicalId":11933,"journal":{"name":"Enzyme","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000468787","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000468787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An enzyme-linked immunosorbent assay (ELISA) was developed for the measurement of bovine Cu,Zn-SOD. Accuracy of the ELISA and specificity of the antibody for cell-free extracts was established by: (1) measurement of antigen levels of bovine endothelial cell extracts reconstituted with pure antigen, and (2) immunoblotting with affinity purified antibody. The ELISA was highly sensitive and 0.05-0.10 ng of pure antigen could be accurately detected, which allowed the measurement of Cu,Zn-SOD in as few as 250 endothelial cells. With utilization of the ELISA for detection, DEAE-cellulose chromatography patterns of endothelial cell Cu,Zn-SOD overlapped those of pure bovine erythrocyte Cu,Zn-SOD. Exposure of cells in culture to 80% O2 for 48 h increased the relative abundance of the Cu,Zn-SOD as measured by the ELISA by 1.8-fold. Thus, endothelial cells in culture respond to hyperoxia by enhanced production of Cu,Zn-SOD protein. The ELISA developed in this study may be useful for assessing other factors that regulate cellular production of Cu,Zn-SOD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ELISA检测高氧升高内皮细胞铜、锌超氧化物歧化酶。
建立了测定牛铜、锌- sod的酶联免疫吸附法(ELISA)。通过:(1)测定用纯抗原重组的牛内皮细胞提取物的抗原水平,(2)用亲和纯化抗体进行免疫印迹,建立ELISA的准确性和抗体的特异性。ELISA灵敏度高,可准确检测到0.05 ~ 0.10 ng的纯抗原,可检测到250个内皮细胞中Cu、Zn-SOD的含量。利用ELISA法检测内皮细胞Cu、Zn-SOD的deae -纤维素色谱图与纯牛红细胞Cu、Zn-SOD的色谱图重叠。细胞在80% O2环境下培养48 h,通过ELISA测定,Cu,Zn-SOD的相对丰度增加了1.8倍。因此,内皮细胞对高氧的反应是通过增加Cu,Zn-SOD蛋白的产生。本研究开发的酶联免疫吸附试验可用于评估调节细胞中Cu,Zn-SOD生成的其他因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional hepatocellular heterogeneity for the production of plasma proteins. Liver cell heterogeneity: functions of non-parenchymal cells. Hepatocyte heterogeneity in the metabolism of carbohydrates. Zonal liver cell heterogeneity. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1