PERAMALAN DENGAN METODE SARIMA PADA DATA INFLASI DAN IDENTIFIKASI TIPE OUTLIER (Studi Kasus: Data Inflasi Indonesia Tahun 2008-2014)

Iin Fadliani, I. Purnamasari, Wasono Wasono
{"title":"PERAMALAN DENGAN METODE SARIMA PADA DATA INFLASI DAN IDENTIFIKASI TIPE OUTLIER (Studi Kasus: Data Inflasi Indonesia Tahun 2008-2014)","authors":"Iin Fadliani, I. Purnamasari, Wasono Wasono","doi":"10.26714/jsunimus.9.2.2021.109-116","DOIUrl":null,"url":null,"abstract":"Inflation is defined as rising prices of goods in general and continuously. The effect of inflation on the economy can cause the currency to decline, resulting in the country's economic power becoming weak. Time series data is data arranged in order of time or data collected over time. Changes in the inflation rate tend to make inflation data unstable and affect the forecasting process in the time series data. The method used in this study is the seasonal autoregressive integrated moving (SARIMA) method to predict the time series in one or two periods ahead. This study also used outlier identifiers on models that still have outlier tendencies in residuals. The forecasting results of the SARIMA method become inaccurate when residual data contains outliers. The presence of outlier data in residual data results in residuals is not a normal distribution. The method used obtained the best model results, namely the SARIMA model (0,1,1) (0,1,1)12 with inflation forecast value for January to May 2015 is in the range of 5-6 %. On SARIMA models (0,1,1) (1,1,1)12 and SARIMA models (1,1,0) (2,1,0)12 outliers are detected in residual are Additive Outlier (AO) and Temporary Change (TC) type.","PeriodicalId":183562,"journal":{"name":"Jurnal Statistika Universitas Muhammadiyah Semarang","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Statistika Universitas Muhammadiyah Semarang","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26714/jsunimus.9.2.2021.109-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Inflation is defined as rising prices of goods in general and continuously. The effect of inflation on the economy can cause the currency to decline, resulting in the country's economic power becoming weak. Time series data is data arranged in order of time or data collected over time. Changes in the inflation rate tend to make inflation data unstable and affect the forecasting process in the time series data. The method used in this study is the seasonal autoregressive integrated moving (SARIMA) method to predict the time series in one or two periods ahead. This study also used outlier identifiers on models that still have outlier tendencies in residuals. The forecasting results of the SARIMA method become inaccurate when residual data contains outliers. The presence of outlier data in residual data results in residuals is not a normal distribution. The method used obtained the best model results, namely the SARIMA model (0,1,1) (0,1,1)12 with inflation forecast value for January to May 2015 is in the range of 5-6 %. On SARIMA models (0,1,1) (1,1,1)12 and SARIMA models (1,1,0) (2,1,0)12 outliers are detected in residual are Additive Outlier (AO) and Temporary Change (TC) type.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与通货膨胀数据的萨里玛方法和外部类型识别(案例研究:印度尼西亚2008-2014年的通货膨胀数据)
通货膨胀被定义为商品价格的普遍和持续上涨。通货膨胀对经济的影响会导致货币贬值,导致国家的经济实力变弱。时间序列数据是按时间顺序排列的数据或随时间收集的数据。通货膨胀率的变化容易使通货膨胀数据不稳定,影响时间序列数据的预测过程。本研究采用的方法是季节自回归积分移动(SARIMA)方法,对时间序列提前一个或两个周期进行预测。本研究还对残差中仍有离群倾向的模型使用了离群标识符。当残差数据中含有异常值时,SARIMA方法的预测结果不准确。残差数据中存在离群数据导致残差不是正态分布。采用的方法得到了最好的模型结果,即SARIMA模型(0,1,1)(0,1,1)12,2015年1 - 5月通货膨胀预测值在5- 6%之间。在SARIMA模型(0,1,1)(1,1,1)12和SARIMA模型(1,1,0)(2,1,0)中,残差中检测到的12个异常点为加性异常点(AO)型和临时变化(TC)型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MODELING COUNT DATA WITH OVER-DISPERSION USING GENERALIZED POISSON REGRESSION: A CASE STUDY OF LOW BIRTH WEIGHT IN INDONESIA AUXILIARY INFORMATION BASED GENERALLY WEIGHTED MOVING AVERAGE FOR PROCESS MEAN ANALYSIS OF THE EFFECT TOURISM SECTOR AND OPEN UNEMPLOYMENT ON ECONOMIC GROWTH IN BALI PROVINCE FORECASTING THE NUMBER OF PASSENGER AT JENDERAL AHMAD YANI SEMARANG INTERNATIONAL AIRPORT USING HYBRID SINGULAR SPECTRUM ANALYSIS-NEURAL NETWORK (SSA-NN) METHOD FOURIER SERIES APPLICATION FOR MODELING “CHOCOLATE” KEYWORD SEARCH TRENDS IN GOOGLE TRENDS DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1