Deep Learning for Multiwell Automatic Log Correction

V. Simoes, H. Maniar, A. Abubakar, T. Zhao
{"title":"Deep Learning for Multiwell Automatic Log Correction","authors":"V. Simoes, H. Maniar, A. Abubakar, T. Zhao","doi":"10.30632/pjv63n6-2022a10","DOIUrl":null,"url":null,"abstract":"Researchers have dedicated numerous applications of machine-learning (ML) techniques for fi eld-scale automated interpretation of well-log data. A critical prerequisite for automatic log processing is to ensure that the log characteristics are reasonably consistent across multiple wells. Manually correcting logs for consistency is laborious, subjective, and error prone. For some wellbore logs, such as gamma ray and neutron porosity, borehole effects and miscalibration can cause systematic inconsistencies or errors that might be present even after the application of wellbore and environmental corrections. Biased or consistently inaccurate data in the logs can confound ML approaches into learning erroneous relationships, leading to misinterpretations, such as wrong lithology prediction, reservoir estimation, and incorrect formation markers. To overcome such difficulties, we have developed a deep learning method to provide petrophysicists with a set of consistent logs through the multiwell automatic log correction (MALC) workflow. Presently, the corrections we target are systematic errors on the standard logs, especially gamma ray and neutron logs, random noises, and to a lesser extent, local formation property misreading due to washouts. We applied the proposed method in multiple fi elds worldwide containing different challenges, and in this paper, we include the results in two fi eld examples. The first one covers the correction of synthetic coherent noise added to fi eld data, and the second example covers the correction applied to original measurements.","PeriodicalId":170688,"journal":{"name":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/pjv63n6-2022a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers have dedicated numerous applications of machine-learning (ML) techniques for fi eld-scale automated interpretation of well-log data. A critical prerequisite for automatic log processing is to ensure that the log characteristics are reasonably consistent across multiple wells. Manually correcting logs for consistency is laborious, subjective, and error prone. For some wellbore logs, such as gamma ray and neutron porosity, borehole effects and miscalibration can cause systematic inconsistencies or errors that might be present even after the application of wellbore and environmental corrections. Biased or consistently inaccurate data in the logs can confound ML approaches into learning erroneous relationships, leading to misinterpretations, such as wrong lithology prediction, reservoir estimation, and incorrect formation markers. To overcome such difficulties, we have developed a deep learning method to provide petrophysicists with a set of consistent logs through the multiwell automatic log correction (MALC) workflow. Presently, the corrections we target are systematic errors on the standard logs, especially gamma ray and neutron logs, random noises, and to a lesser extent, local formation property misreading due to washouts. We applied the proposed method in multiple fi elds worldwide containing different challenges, and in this paper, we include the results in two fi eld examples. The first one covers the correction of synthetic coherent noise added to fi eld data, and the second example covers the correction applied to original measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的多井自动测井校正
研究人员已经将机器学习(ML)技术用于现场规模的测井数据自动解释。自动测井处理的一个关键前提是确保多口井的测井特征合理一致。手动修改日志以保持一致性是费力的、主观的,而且容易出错。对于某些井眼测井,如伽马射线和中子孔隙度,井眼效应和错误校准可能导致系统不一致或错误,即使在应用井眼和环境校正后也可能存在。测井数据中有偏差或始终不准确的数据可能会使机器学习方法学习错误的关系,从而导致误解,例如错误的岩性预测、储层估计和错误的地层标志。为了克服这些困难,我们开发了一种深度学习方法,通过多井自动测井校正(MALC)工作流程为岩石物理学家提供一组一致的测井数据。目前,我们的校正目标是标准测井的系统误差,特别是伽马射线和中子测井,随机噪声,以及较小程度上由于冲蚀引起的局部地层性质误读。我们将所提出的方法应用于全球多个具有不同挑战的领域,在本文中,我们将结果包含在两个领域的例子中。第一个例子涵盖了对现场数据中添加的合成相干噪声的校正,第二个例子涵盖了对原始测量值的校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Geological Facies Analysis in Crust-Mantle Transition Zone Petrophysical Analyses for Supporting the Search for a Claystone-Hosted Nuclear Repository A New R35 and Fractal Joint Rock Typing Method Using MICP Analysis: A Case Study in Middle East Iraq Nuclear Logging in Geological Probing for a Low-Carbon Energy Future – A New Frontier? Underground Hydrogen Storage in Porous Media: The Potential Role of Petrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1