Estimating biases in sensor measurements using airlane information

H. Ong, M. Oxenham, B. Ristic
{"title":"Estimating biases in sensor measurements using airlane information","authors":"H. Ong, M. Oxenham, B. Ristic","doi":"10.1109/IDC.2002.995390","DOIUrl":null,"url":null,"abstract":"When sensors are poorly registered, systematic errors or biases can appear in their measurements, hampering the formation of a fused surveillance picture. To estimate and correct for these biases, a method exploiting airlane information is proposed. Models of the bias state and bias measurement are first formulated. Then, based on the airlane associated with a target of opportunity, a Gaussian mixture model is formulated for the target's position. Particle filter estimation is employed to handle the nonlinear/non-Gaussian nature of the models. Simulation results are given to demonstrate the ability of this method to correct for biases in sensor measurements effectively.","PeriodicalId":385351,"journal":{"name":"Final Program and Abstracts on Information, Decision and Control","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Final Program and Abstracts on Information, Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDC.2002.995390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

When sensors are poorly registered, systematic errors or biases can appear in their measurements, hampering the formation of a fused surveillance picture. To estimate and correct for these biases, a method exploiting airlane information is proposed. Models of the bias state and bias measurement are first formulated. Then, based on the airlane associated with a target of opportunity, a Gaussian mixture model is formulated for the target's position. Particle filter estimation is employed to handle the nonlinear/non-Gaussian nature of the models. Simulation results are given to demonstrate the ability of this method to correct for biases in sensor measurements effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用飞机信息估计传感器测量中的偏差
当传感器注册不当时,系统误差或偏差可能出现在它们的测量中,阻碍了融合监控图像的形成。为了估计和纠正这些偏差,提出了一种利用飞机信息的方法。首先建立了偏置状态和偏置测量的模型。然后,根据与机会目标相关联的航线,建立目标位置的高斯混合模型。采用粒子滤波估计来处理模型的非线性/非高斯性质。仿真结果表明,该方法能够有效地校正传感器测量中的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision missile guidance with angle only measurements Data deterioration: using laboratory measurements for dynamic calibration The geometric significance of spectral nulls Minimally redundant maximally robust linear precoders Full autonomy of intelligent flight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1