An Improved Heuristic Based Genetic Algorithm for Bin Packing Problem

Aluísio Cardoso Silva, C. Borges
{"title":"An Improved Heuristic Based Genetic Algorithm for Bin Packing Problem","authors":"Aluísio Cardoso Silva, C. Borges","doi":"10.1109/BRACIS.2019.00020","DOIUrl":null,"url":null,"abstract":"The NP-complete bin packing problem is a widely studied grouping problem that serves to model several useful and practical problems, e.g., batch-processing machine scheduling, industrial and transportation logistics, etc. Due to the complexity involved to solve this class of problems, usually two main strategies are adopted: sub-optimal building heuristics and optimization models using metaheuristics algorithms. The building heuristics are computationally efficient, however, usually obtaining non-optimal solutions or local minima. Otherwise, adapted metaheuristics to handle this problem allows an effective global search which augments the chance to obtain optimal or quasi-optimal solutions, however with a high computational cost. This work develops a heuristic based genetic algorithm aiming to obtain a hybrid approach constructed to explore the best features of each strategy. Special encoding handling and specific operators are included additionally to the final model to enhance the behavior and performance of the hybrid model. Numerical experimental using well-established benchmarks for one-dimensional bin packing problem are carried out to compare the versions of the presented hybrid methods with high-quality methods presented in the literature. The results indicate the potential for the presented strategy to solve the one-dimensional bin packing problems.","PeriodicalId":335206,"journal":{"name":"Brazilian Conference on Intelligent Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Conference on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The NP-complete bin packing problem is a widely studied grouping problem that serves to model several useful and practical problems, e.g., batch-processing machine scheduling, industrial and transportation logistics, etc. Due to the complexity involved to solve this class of problems, usually two main strategies are adopted: sub-optimal building heuristics and optimization models using metaheuristics algorithms. The building heuristics are computationally efficient, however, usually obtaining non-optimal solutions or local minima. Otherwise, adapted metaheuristics to handle this problem allows an effective global search which augments the chance to obtain optimal or quasi-optimal solutions, however with a high computational cost. This work develops a heuristic based genetic algorithm aiming to obtain a hybrid approach constructed to explore the best features of each strategy. Special encoding handling and specific operators are included additionally to the final model to enhance the behavior and performance of the hybrid model. Numerical experimental using well-established benchmarks for one-dimensional bin packing problem are carried out to compare the versions of the presented hybrid methods with high-quality methods presented in the literature. The results indicate the potential for the presented strategy to solve the one-dimensional bin packing problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的启发式遗传算法求解装箱问题
np -完全装箱问题是一个被广泛研究的成组问题,它用于建模一些有用的和实际的问题,如批加工机器调度、工业和运输物流等。由于解决这类问题的复杂性,通常采用两种主要策略:次最优构建启发式和使用元启发式算法的优化模型。建筑启发式算法计算效率高,但通常会得到非最优解或局部最小值。否则,适应的元启发式方法可以有效地进行全局搜索,从而增加获得最优或准最优解的机会,但是计算成本很高。本工作开发了一种基于启发式的遗传算法,旨在获得一种混合方法,以探索每种策略的最佳特征。在最终模型中还增加了特殊的编码处理和特定的运算符,以增强混合模型的行为和性能。数值实验使用完善的基准一维装箱问题进行了比较版本提出的混合方法与文献中提出的高质量的方法。结果表明,该策略具有解决一维装箱问题的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental MaxSAT-Based Model to Learn Interpretable and Balanced Classification Rules Logic-Based Explanations for Linear Support Vector Classifiers with Reject Option Event Detection in Therapy Sessions for Children with Autism Augmenting a Physics-Informed Neural Network for the 2D Burgers Equation by Addition of Solution Data Points Single Image Super-Resolution Based on Capsule Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1