Multi-objective Exploration of Compiler Optimizations for Real-Time Systems

Paul Lokuciejewski, Sascha Plazar, H. Falk, P. Marwedel, L. Thiele
{"title":"Multi-objective Exploration of Compiler Optimizations for Real-Time Systems","authors":"Paul Lokuciejewski, Sascha Plazar, H. Falk, P. Marwedel, L. Thiele","doi":"10.1109/ISORC.2010.15","DOIUrl":null,"url":null,"abstract":"With the growing complexity of embedded systems software, high code quality can only be achieved using a compiler. Sophisticated compilers provide a vast spectrum of various optimizations to improve code aggressively w. r. t. different objective functions, e. g., average-case execution time (ACET) or code size. Due to the complex interactions between the optimizations, the choice for a promising sequence of code transformations is not trivial. Compiler developers address this problem by proposing standard optimization levels, e. g., O3 or Os. However, previous studies have shown that these standard levels often miss optimization potential or might even result in performance degradation. In this paper, we propose the first adaptive WCET-aware compiler framework for an automatic search of compiler optimization sequences which yield highly optimized code. Besides the objective functions ACET and code size, we consider the worst-case execution time (WCET) which is a crucial parameter for real-time systems. To find suitable trade-offs between these objectives, stochastic evolutionary multi-objective algorithms identifying Pareto optimal solutions are exploited. A comparison based on statistical performance assessments is performed which helps to determine the most suitable multi-objective optimizer. The effectiveness of our approach is demonstrated on real-life benchmarks showing that standard optimization levels can be significantly outperformed.","PeriodicalId":142767,"journal":{"name":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

With the growing complexity of embedded systems software, high code quality can only be achieved using a compiler. Sophisticated compilers provide a vast spectrum of various optimizations to improve code aggressively w. r. t. different objective functions, e. g., average-case execution time (ACET) or code size. Due to the complex interactions between the optimizations, the choice for a promising sequence of code transformations is not trivial. Compiler developers address this problem by proposing standard optimization levels, e. g., O3 or Os. However, previous studies have shown that these standard levels often miss optimization potential or might even result in performance degradation. In this paper, we propose the first adaptive WCET-aware compiler framework for an automatic search of compiler optimization sequences which yield highly optimized code. Besides the objective functions ACET and code size, we consider the worst-case execution time (WCET) which is a crucial parameter for real-time systems. To find suitable trade-offs between these objectives, stochastic evolutionary multi-objective algorithms identifying Pareto optimal solutions are exploited. A comparison based on statistical performance assessments is performed which helps to determine the most suitable multi-objective optimizer. The effectiveness of our approach is demonstrated on real-life benchmarks showing that standard optimization levels can be significantly outperformed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时系统编译器优化的多目标探索
随着嵌入式系统软件的日益复杂,只有使用编译器才能实现高质量的代码。复杂的编译器提供了广泛的各种优化,以根据不同的目标函数(例如,平均情况执行时间(ACET)或代码大小)积极改进代码。由于优化之间的复杂交互,选择一个有前途的代码转换序列是非常重要的。编译器开发人员通过提出标准的优化级别来解决这个问题,例如O3或o。然而,以前的研究表明,这些标准级别经常错过优化潜力,甚至可能导致性能下降。在本文中,我们提出了第一个自适应wcet感知编译器框架,用于自动搜索编译器优化序列,从而产生高度优化的代码。除了目标函数ACET和代码大小外,我们还考虑了最坏情况执行时间(WCET),这是实时系统的一个重要参数。为了在这些目标之间找到合适的权衡,利用随机进化多目标算法识别帕累托最优解。基于统计性能评估的比较有助于确定最合适的多目标优化器。我们的方法的有效性在现实生活的基准测试中得到了证明,表明标准优化水平可以显著优于标准优化水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A MDE-Based Optimisation Process for Real-Time Systems Architectural and Behavioral Modeling with AADL for Fault Tolerant Embedded Systems VIS Analyzer: A Visual Assistant for VIS Verification and Analysis Design and Performance Evaluation of Binary Code Packing for Protecting Embedded Software against Reverse Engineering Implementing and Evaluating the AHS Organic Middleware - A First Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1