Spatial-temporal Transformers for EEG Emotion Recognition

Jiyao Liu, Hao Wu, Li Zhang, Yanxi Zhao
{"title":"Spatial-temporal Transformers for EEG Emotion Recognition","authors":"Jiyao Liu, Hao Wu, Li Zhang, Yanxi Zhao","doi":"10.1145/3571560.3571577","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is a popular and effective tool for emotion recognition. However, the propagation mechanisms of EEG in the human brain and its intrinsic correlation with emotions are still obscure to researchers. This work proposes four variant transformer frameworks (spatial attention, temporal attention, sequential spatial-temporal attention and simultaneous spatial-temporal attention) for EEG emotion recognition to explore the relationship between emotion and spatial-temporal EEG features. Specifically, spatial attention and temporal attention are to learn the topological structure information and time-varying EEG characteristics for emotion recognition respectively. Sequential spatial-temporal attention does the spatial attention within a one-second segment and temporal attention within one sample sequentially to explore the influence degree of emotional stimulation on EEG signals of diverse EEG electrodes in the same temporal segment. The simultaneous spatial-temporal attention, whose spatial and temporal attention are performed simultaneously, is used to model the relationship between different spatial features in different time segments. The experimental results demonstrate that simultaneous spatial-temporal attention leads to the best emotion recognition accuracy among the design choices, indicating modeling the correlation of spatial and temporal features of EEG signals is significant to emotion recognition.","PeriodicalId":143909,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571560.3571577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Electroencephalography (EEG) is a popular and effective tool for emotion recognition. However, the propagation mechanisms of EEG in the human brain and its intrinsic correlation with emotions are still obscure to researchers. This work proposes four variant transformer frameworks (spatial attention, temporal attention, sequential spatial-temporal attention and simultaneous spatial-temporal attention) for EEG emotion recognition to explore the relationship between emotion and spatial-temporal EEG features. Specifically, spatial attention and temporal attention are to learn the topological structure information and time-varying EEG characteristics for emotion recognition respectively. Sequential spatial-temporal attention does the spatial attention within a one-second segment and temporal attention within one sample sequentially to explore the influence degree of emotional stimulation on EEG signals of diverse EEG electrodes in the same temporal segment. The simultaneous spatial-temporal attention, whose spatial and temporal attention are performed simultaneously, is used to model the relationship between different spatial features in different time segments. The experimental results demonstrate that simultaneous spatial-temporal attention leads to the best emotion recognition accuracy among the design choices, indicating modeling the correlation of spatial and temporal features of EEG signals is significant to emotion recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电情感识别的时空变换
脑电图(EEG)是一种流行且有效的情绪识别工具。然而,脑电图在人脑中的传播机制及其与情绪的内在联系仍不清楚。本文提出了空间注意、时间注意、时序时空注意和同时时空注意四种不同的脑电情感识别转换框架,探索情绪与时空脑电特征之间的关系。其中,空间注意和时间注意分别学习拓扑结构信息和时变脑电图特征进行情绪识别。时序时空注意将一秒内的空间注意和一个样本内的时间注意按顺序进行,探讨情绪刺激对同一时间段内不同脑电电极脑电信号的影响程度。同时时空注意是指同时进行空间和时间注意,用于模拟不同时间段不同空间特征之间的关系。实验结果表明,同时存在时空注意的情绪识别准确率最高,说明建模脑电信号时空特征的相关性对情绪识别具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A semantic real-time activity recognition system for sequential procedures in vocational learning An Effective Implementation of Detection and Retrieval Property of Episodic Memory Measuring Airport Service Quality Using Machine Learning Algorithms Prospects for the use of algebraic rings to describe the operation of convolutional neural networks Optimizing Ethanol Production in Escherichia Coli Using a Hybrid of Particle Swarm Optimization and Artificial Bee Colony
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1