Gender Prediction Based on Vietnamese Names with Machine Learning Techniques

H. To, Kiet Van Nguyen, N. Nguyen, A. Nguyen
{"title":"Gender Prediction Based on Vietnamese Names with Machine Learning Techniques","authors":"H. To, Kiet Van Nguyen, N. Nguyen, A. Nguyen","doi":"10.1145/3443279.3443309","DOIUrl":null,"url":null,"abstract":"As biological gender is one of the aspects of presenting individual human, much work has been done on gender classification based on people names. The proposals for English and Chinese languages are tremendous; still, there have been few works done for Vietnamese so far. We propose a new dataset for gender prediction based on Vietnamese names. This dataset comprises over 26,000 full names annotated with genders. This dataset is available on our website for research purposes. In addition, this paper describes six machine learning algorithms (Support Vector Machine, Multinomial Naive Bayes, Bernoulli Naive Bayes, Decision Tree, Random Forrest and Logistic Regression) and a deep learning model (LSTM) with fastText word embedding for gender prediction on Vietnamese names. We create a dataset and investigate the impact of each name component on detecting gender. As a result, the best F1-score that we have achieved is up to 96% on LSTM model and we generate a web API based on our trained model.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3443279.3443309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

As biological gender is one of the aspects of presenting individual human, much work has been done on gender classification based on people names. The proposals for English and Chinese languages are tremendous; still, there have been few works done for Vietnamese so far. We propose a new dataset for gender prediction based on Vietnamese names. This dataset comprises over 26,000 full names annotated with genders. This dataset is available on our website for research purposes. In addition, this paper describes six machine learning algorithms (Support Vector Machine, Multinomial Naive Bayes, Bernoulli Naive Bayes, Decision Tree, Random Forrest and Logistic Regression) and a deep learning model (LSTM) with fastText word embedding for gender prediction on Vietnamese names. We create a dataset and investigate the impact of each name component on detecting gender. As a result, the best F1-score that we have achieved is up to 96% on LSTM model and we generate a web API based on our trained model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习技术的越南语姓名性别预测
由于生物性别是人类个体表现的一个方面,基于人名的性别分类已经做了很多工作。对英语和汉语的建议是巨大的;然而,到目前为止,为越南人做的工作还很少。我们提出了一个基于越南名字的性别预测新数据集。该数据集包含26,000多个带性别注释的全名。该数据集可在我们的网站上获得,用于研究目的。此外,本文还介绍了六种机器学习算法(支持向量机、多项式朴素贝叶斯、伯努利朴素贝叶斯、决策树、随机福雷斯特和逻辑回归)和一种快速文本词嵌入的深度学习模型(LSTM),用于越南人名的性别预测。我们创建了一个数据集,并研究了每个名字成分对检测性别的影响。结果,我们在LSTM模型上获得的最佳f1分数高达96%,并基于我们训练的模型生成了web API。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ranking Hotel Reviews Based on User's Aspects Importance and Opinions Research on Information Extraction of Municipal Solid Waste Crisis using BERT-LSTM-CRF A Classification on Different Aspects of User Modelling in Personalized Web Search Automatic Summarization of Stock Market News Articles IME-Spell: Chinese Spelling Check based on Input Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1