{"title":"Weighted fast iterative shrinkage thresholding for 3D massive MIMO channel estimation","authors":"Ahmed Nasser, M. Elsabrouty, O. Muta","doi":"10.1109/PIMRC.2017.8292556","DOIUrl":null,"url":null,"abstract":"Fitting the huge number of pilots needed for massive multiple inputs multiple outputs antennas (MIMO) channel estimation within the available time and frequency resources is a challenging problem. Generally, compressed sensing (CS) channel estimation algorithms face the dilemma of trading off the estimation accuracy and the computational complexity. In this paper, we propose a weighted fast iterative shrinkage thresholding algorithm (W-FISTA). The proposed algorithm provides higher estimation efficiency with the same complexity as the original FISTA. With low computational complexity, multiple measurement vectors (MMV) version of the W-FISTA is proposed to estimate the 3D massive MIMO channel. The proposed MMV-WFISTA estimate the channel coefficients by exploiting its joint sparsity structure in the angle-delay sparse domain. The complexity analysis and the simulation results indicate a clear improvement in the performance of the proposed MMV-WFISTA over joint estimation algorithms.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Fitting the huge number of pilots needed for massive multiple inputs multiple outputs antennas (MIMO) channel estimation within the available time and frequency resources is a challenging problem. Generally, compressed sensing (CS) channel estimation algorithms face the dilemma of trading off the estimation accuracy and the computational complexity. In this paper, we propose a weighted fast iterative shrinkage thresholding algorithm (W-FISTA). The proposed algorithm provides higher estimation efficiency with the same complexity as the original FISTA. With low computational complexity, multiple measurement vectors (MMV) version of the W-FISTA is proposed to estimate the 3D massive MIMO channel. The proposed MMV-WFISTA estimate the channel coefficients by exploiting its joint sparsity structure in the angle-delay sparse domain. The complexity analysis and the simulation results indicate a clear improvement in the performance of the proposed MMV-WFISTA over joint estimation algorithms.