State Classification in Injection Molding Cycles using Transformation of Acceleration Data into Images

K. Pichler, J. Brunthaler, W. Lubowski, P. Grabski, Veronika Putz, S. Breitenberger, C. Kastl
{"title":"State Classification in Injection Molding Cycles using Transformation of Acceleration Data into Images","authors":"K. Pichler, J. Brunthaler, W. Lubowski, P. Grabski, Veronika Putz, S. Breitenberger, C. Kastl","doi":"10.1109/IRI58017.2023.00027","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method to distinguish the different states of an injection molding process which is an important basis for monitoring and subsequently optimizing the production process and its efficiency. For this purpose, a triaxial accelerometer is used, which can be easily and inexpensively retrofitted on the machine. The signals from the accelerometer are transformed into images using various algorithms known from the literature (especially for human activity recognition). Afterwards, these images are classified using Convolutional Neural Networks (CNNs). The classification results of different transformation methods and CNNs are combined by weighted majority voting to achieve higher robustness of the classification. The results show high accuracy and are promising for further developments in this area.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a method to distinguish the different states of an injection molding process which is an important basis for monitoring and subsequently optimizing the production process and its efficiency. For this purpose, a triaxial accelerometer is used, which can be easily and inexpensively retrofitted on the machine. The signals from the accelerometer are transformed into images using various algorithms known from the literature (especially for human activity recognition). Afterwards, these images are classified using Convolutional Neural Networks (CNNs). The classification results of different transformation methods and CNNs are combined by weighted majority voting to achieve higher robustness of the classification. The results show high accuracy and are promising for further developments in this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加速数据图像转换的注塑周期状态分类
本文提出了一种区分注射成型过程中不同状态的方法,这是监控和随后优化生产过程及其效率的重要依据。为此,使用了一个三轴加速度计,它可以很容易和廉价地在机器上进行改装。来自加速度计的信号使用文献中已知的各种算法(特别是用于人类活动识别)转换为图像。然后,使用卷积神经网络(cnn)对这些图像进行分类。通过加权多数投票将不同变换方法和cnn的分类结果进行组合,使分类具有更高的鲁棒性。结果表明,该方法具有较高的精度,为该领域的进一步发展提供了良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research Paper Classification and Recommendation System based-on Fine-Tuning BERT Using BERT to Understand TikTok Users’ ADHD Discussion Enhancing Noisy Binary Search Efficiency through Deep Reinforcement Learning Copyright An Approach to Testing Banking Software Using Metamorphic Relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1