Inferring land use from mobile phone activity

Jameson L. Toole, M. Ulm, D. Bauer, Marta C. González
{"title":"Inferring land use from mobile phone activity","authors":"Jameson L. Toole, M. Ulm, D. Bauer, Marta C. González","doi":"10.1145/2346496.2346498","DOIUrl":null,"url":null,"abstract":"Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. Obtaining data to create required knowledge, currently involves costly survey methods. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations, communications, and activities of millions of people are recorded and stored by new information technologies. This work utilizes novel dynamic data, generated by mobile phone users, to measure spatiotemporal changes in population. In the process, we identify the relationship between land use and dynamic population over the course of a typical week. A machine learning classification algorithm is used to identify clusters of locations with similar zoned uses and mobile phone activity patterns. It is shown that the mobile phone data is capable of delivering useful information on actual land use that supplements zoning regulations.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"312","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2346496.2346498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 312

Abstract

Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. Obtaining data to create required knowledge, currently involves costly survey methods. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations, communications, and activities of millions of people are recorded and stored by new information technologies. This work utilizes novel dynamic data, generated by mobile phone users, to measure spatiotemporal changes in population. In the process, we identify the relationship between land use and dynamic population over the course of a typical week. A machine learning classification algorithm is used to identify clusters of locations with similar zoned uses and mobile phone activity patterns. It is shown that the mobile phone data is capable of delivering useful information on actual land use that supplements zoning regulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过手机活动推断土地使用情况
了解城市中人口的时空分布对许多规划应用至关重要。获取数据以创造所需的知识,目前涉及昂贵的调查方法。与此同时,从个人GPS设备到移动电话,无处不在的移动传感器正在收集城市系统的大量数据。新的信息技术记录和存储了数百万人的位置、通信和活动。这项工作利用由移动电话用户产生的新颖动态数据来测量人口的时空变化。在此过程中,我们确定了典型一周内土地利用与动态人口之间的关系。使用机器学习分类算法来识别具有相似分区用途和手机活动模式的位置集群。研究表明,移动电话数据能够提供有关实际土地使用的有用信息,补充分区条例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of urban commuting patterns using cellphone network data Sensing places' life to make city smarter Exploration of ground truth from raw GPS data Mining traffic incidents to forecast impact Using smart card data to extract passenger's spatio-temporal density and train's trajectory of MRT system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1