Data fusion using feature selection based causal network algorithm

B. Han, Tie-Jun Wu
{"title":"Data fusion using feature selection based causal network algorithm","authors":"B. Han, Tie-Jun Wu","doi":"10.1109/IDC.2002.995446","DOIUrl":null,"url":null,"abstract":"We propose a statistical definition of reduct and develop a feature selection algorithm based upon it. It shows that the features found by this algorithm get the largest coverage of the objects, and is most resistant to noise compared with the results found by genetic and dynamic reduct searching algorithm when they are applied to a water-pollution monitoring multisensor fusion system, which is described by the causal network model. Comparative tests show that with the selected features, the efficiency of the causal network based searching algorithm is greatly improved, at the same time the classification accuracy is maintained.","PeriodicalId":385351,"journal":{"name":"Final Program and Abstracts on Information, Decision and Control","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Final Program and Abstracts on Information, Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDC.2002.995446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a statistical definition of reduct and develop a feature selection algorithm based upon it. It shows that the features found by this algorithm get the largest coverage of the objects, and is most resistant to noise compared with the results found by genetic and dynamic reduct searching algorithm when they are applied to a water-pollution monitoring multisensor fusion system, which is described by the causal network model. Comparative tests show that with the selected features, the efficiency of the causal network based searching algorithm is greatly improved, at the same time the classification accuracy is maintained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征选择的因果网络数据融合算法
提出了约简的统计定义,并在此基础上开发了一种特征选择算法。结果表明,将该算法找到的特征应用于因果网络模型描述的水污染监测多传感器融合系统中,与遗传算法和动态约简搜索算法的结果相比,该算法对目标的覆盖范围最大,对噪声的抵抗能力最强。对比实验表明,在选取特征的基础上,基于因果网络的搜索算法在保持分类精度的同时,效率大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision missile guidance with angle only measurements Data deterioration: using laboratory measurements for dynamic calibration The geometric significance of spectral nulls Minimally redundant maximally robust linear precoders Full autonomy of intelligent flight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1