New Robust LPC-Based Method for Time-resolved Morphology of High-noise Multiple Frequency Signals

Jin Xu, M. Davis, Ruairí de Fréin
{"title":"New Robust LPC-Based Method for Time-resolved Morphology of High-noise Multiple Frequency Signals","authors":"Jin Xu, M. Davis, Ruairí de Fréin","doi":"10.1109/ISSC49989.2020.9180212","DOIUrl":null,"url":null,"abstract":"This paper introduces a new time-resolved spectral analysis method based on the Linear Prediction Coding (LPC) method that is particularly suited to the study of the dynamics of low Signal-to-noise Ratio (SNR) signals comprising multiple frequency components. One of the challenges of the time-resolved spectral method is that they are limited by the Heisenberg-Gabor uncertainty principle. Consequently, there is a trade-off between the temporal and spectral resolution. Most of the previous studies are time-averaged methods. The proposed method is a parameterisation method which can directly extract the dominant formants. The method is based on a z-plane analysis of the poles of the LPC filter which allows us to identify and to accurately estimate the frequency of the dominant spectral features. We demonstrate how this method can be used to track the temporal variations of the various frequency components in a noisy signal. In particular, the standard LPC method, new proposed LPC method and the Short-time Fourier Transform (STFT) are compared using a noisy Frequency Modulation (FM) signal as a test signal. We show that the proposed method provides the best performance in tracking the frequency changes in real time.","PeriodicalId":351013,"journal":{"name":"2020 31st Irish Signals and Systems Conference (ISSC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC49989.2020.9180212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new time-resolved spectral analysis method based on the Linear Prediction Coding (LPC) method that is particularly suited to the study of the dynamics of low Signal-to-noise Ratio (SNR) signals comprising multiple frequency components. One of the challenges of the time-resolved spectral method is that they are limited by the Heisenberg-Gabor uncertainty principle. Consequently, there is a trade-off between the temporal and spectral resolution. Most of the previous studies are time-averaged methods. The proposed method is a parameterisation method which can directly extract the dominant formants. The method is based on a z-plane analysis of the poles of the LPC filter which allows us to identify and to accurately estimate the frequency of the dominant spectral features. We demonstrate how this method can be used to track the temporal variations of the various frequency components in a noisy signal. In particular, the standard LPC method, new proposed LPC method and the Short-time Fourier Transform (STFT) are compared using a noisy Frequency Modulation (FM) signal as a test signal. We show that the proposed method provides the best performance in tracking the frequency changes in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒lpc的高噪声多频信号时间分辨形态学新方法
本文介绍了一种新的基于线性预测编码(LPC)方法的时间分辨频谱分析方法,该方法特别适合研究包含多个频率分量的低信噪比(SNR)信号的动态特性。时间分辨光谱法面临的挑战之一是它们受到海森堡-加伯测不准原理的限制。因此,在时间分辨率和光谱分辨率之间存在权衡。以往的研究大多采用时间平均法。该方法是一种参数化方法,可以直接提取优势共振峰。该方法基于对LPC滤波器极点的z平面分析,使我们能够识别并准确估计主要光谱特征的频率。我们演示了如何使用这种方法来跟踪噪声信号中各种频率成分的时间变化。以带噪声调频(FM)信号作为测试信号,对标准LPC方法、新提出的LPC方法和短时傅立叶变换(STFT)进行了比较。结果表明,该方法在实时跟踪频率变化方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Intra-Subject Variation in Gait Analysis on ASD Classification Performance in Machine Learning Models Practical Implementation of APTs on PTP Time Synchronisation Networks Not Everything You Read Is True! Fake News Detection using Machine learning Algorithms Semi-Supervised Learning with Generative Adversarial Networks for Pathological Speech Classification Reduced Complexity Approach for Uplink Rate Trajectory Prediction in Mobile Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1