{"title":"An introduction to multiple-window analysis of array data","authors":"D. Thomson","doi":"10.1109/MDSP.1989.97062","DOIUrl":null,"url":null,"abstract":"Summary form only given. The basic theory and some recent developments in the theory of multiple-window methods for array data are reviewed. Applied to small samples or nonstationary data, this method has numerous advantages over conventional techniques. It is a small sample theory, essentially an inverse method applied to the finite Fourier transform; its statistical efficiency is typically a factor of two to three higher than that of conventional methods with the same degree of bias protection; and it separates the continuous part of the spectrum from line components. In addition, it has the major advantage that underlying assumptions can be tested. However, because higher-dimensional problems are more delicate than univariate ones, robustness and diagnostics become far from critical. Such diagnostics are illustrated by the application of multiple-window methods to analysis of data from a linear array of three-axis magnetometers.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary form only given. The basic theory and some recent developments in the theory of multiple-window methods for array data are reviewed. Applied to small samples or nonstationary data, this method has numerous advantages over conventional techniques. It is a small sample theory, essentially an inverse method applied to the finite Fourier transform; its statistical efficiency is typically a factor of two to three higher than that of conventional methods with the same degree of bias protection; and it separates the continuous part of the spectrum from line components. In addition, it has the major advantage that underlying assumptions can be tested. However, because higher-dimensional problems are more delicate than univariate ones, robustness and diagnostics become far from critical. Such diagnostics are illustrated by the application of multiple-window methods to analysis of data from a linear array of three-axis magnetometers.<>