An Application of Markov Jump Process Model for Activity-Based Indoor Mobility Prediction in Wireless Networks

J. Kolodziej, S. Khan, Lizhe Wang, N. Min-Allah, S. Madani, N. Ghani, Hongxiang Li
{"title":"An Application of Markov Jump Process Model for Activity-Based Indoor Mobility Prediction in Wireless Networks","authors":"J. Kolodziej, S. Khan, Lizhe Wang, N. Min-Allah, S. Madani, N. Ghani, Hongxiang Li","doi":"10.1109/FIT.2011.17","DOIUrl":null,"url":null,"abstract":"One of the most important objectives of a wireless network is to facilitate a prediction of users mobility regardless of their point of attachment to the network. In indoor environments the effective users motion prediction system and wireless localization technology play an important role in all aspects of peoples daily lives. In this paper we propose an activity-based continuous-time Markov model to define and predict the human movement patterns. This model is a simple extension of an Activity based Mobility Prediction algorithm using Markov modeling (AMPuMM) technique. Both models are experimentally evaluated in realistic small university campus scenario. The obtained results show us the high efficiency of the jump methodology in the prediction of the students activities in the indoor campus environment.","PeriodicalId":101923,"journal":{"name":"2011 Frontiers of Information Technology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2011.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

One of the most important objectives of a wireless network is to facilitate a prediction of users mobility regardless of their point of attachment to the network. In indoor environments the effective users motion prediction system and wireless localization technology play an important role in all aspects of peoples daily lives. In this paper we propose an activity-based continuous-time Markov model to define and predict the human movement patterns. This model is a simple extension of an Activity based Mobility Prediction algorithm using Markov modeling (AMPuMM) technique. Both models are experimentally evaluated in realistic small university campus scenario. The obtained results show us the high efficiency of the jump methodology in the prediction of the students activities in the indoor campus environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马尔可夫跳跃过程模型在无线网络中基于活动的室内移动性预测中的应用
无线网络最重要的目标之一是促进对用户移动性的预测,而不管他们连接到网络的点是什么。在室内环境中,有效的用户运动预测系统和无线定位技术在人们日常生活的各个方面发挥着重要作用。本文提出了一种基于活动的连续时间马尔可夫模型来定义和预测人类的运动模式。该模型是使用马尔可夫建模(AMPuMM)技术的基于活动的移动性预测算法的简单扩展。两种模型都在实际的小型大学校园场景中进行了实验评估。结果表明,跳跃法在预测校园室内环境中学生活动方面具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Non-functional Requirements in Service Oriented Development Secure Solution to Data Transfer from Sensor Node to Sink against Aggregator Compromises Development of an Optical Sensor for the Detection of Volatile Organic Compounds Network Performance Optimization: A Case Study of Enterprise Network Simulated in OPNET Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1