ANALISIS INTEGRASI DATA PADA RELASIONAL BASIS DATA DENGAN MENGGUNAKAN METODE SCHEMA MATCHING

Rifqi Hammad
{"title":"ANALISIS INTEGRASI DATA PADA RELASIONAL BASIS DATA DENGAN MENGGUNAKAN METODE SCHEMA MATCHING","authors":"Rifqi Hammad","doi":"10.33020/SAINTEKOM.V9I1.79","DOIUrl":null,"url":null,"abstract":"University is one of the agencies that use information technology to support various business processes. University requires data integration between the systems so that the data available in one system can be used in other systems to support data management.In forwarding data integration there are several obstacles that occur one of the causes is schema heterogeneity used by each information system. linguistic method is one of the schema matching methods used to overcome the problem of schema heterogeneityBased on the analysis of database schemes with the linguistic method, the values of precision, recall and f measure are 0.75. This value indicates that the application of the matching schema has been quite good. But there are still some of the same data between the schemes so that the integration of the data owned is not maximal. So that optimization is still needed to maximize the data integration","PeriodicalId":359182,"journal":{"name":"Jurnal SAINTEKOM","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal SAINTEKOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33020/SAINTEKOM.V9I1.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

University is one of the agencies that use information technology to support various business processes. University requires data integration between the systems so that the data available in one system can be used in other systems to support data management.In forwarding data integration there are several obstacles that occur one of the causes is schema heterogeneity used by each information system. linguistic method is one of the schema matching methods used to overcome the problem of schema heterogeneityBased on the analysis of database schemes with the linguistic method, the values of precision, recall and f measure are 0.75. This value indicates that the application of the matching schema has been quite good. But there are still some of the same data between the schemes so that the integration of the data owned is not maximal. So that optimization is still needed to maximize the data integration
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用匹配SCHEMA方法分析关系数据库的数据整合
大学是利用信息技术支持各种业务流程的机构之一。大学需要系统之间的数据集成,以便一个系统中的数据可以在其他系统中使用,以支持数据管理。在数据转发集成中存在着一些障碍,其中一个原因是各个信息系统所使用的模式异构性。语言方法是克服模式异构问题的一种模式匹配方法,基于语言方法对数据库方案的分析,精确度、召回率和f度量值均为0.75。该值表明匹配模式的应用程序非常好。但是方案之间仍然存在一些相同的数据,使得所拥有的数据集成度不是最大的。因此,优化仍然需要最大化数据集成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Algoritma K-Means untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara Implementasi Aplikasi Laporjalanku untuk Pemetaan dan Pelaporan Jalan Rusak di Wilayah Kota Tarakan Pengukuran Kematangan Keamanan Siber pada Perusahaan Teknologi Informasi dengan Framework Center for Internet Security Controls Klasifikasi Sentimen Terhadap Kualitas Aplikasi Bahan Ajar Digital Akademik Universitas Terbuka di Google Play Evaluasi Keamanan Teknologi Informasi Menggunakan Indeks Keamanan Informasi 5.0 dan ISO/EIC 27001:2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1