Performance Issues of SYRK Implementations in Shared Memory Environments for Edge Cases

Md Mosharaf Hossain, Thomas M. Hines, S. Ghafoor, Ryan J. Marshall, Muzakhir S. Amanzholov, R. Kannan
{"title":"Performance Issues of SYRK Implementations in Shared Memory Environments for Edge Cases","authors":"Md Mosharaf Hossain, Thomas M. Hines, S. Ghafoor, Ryan J. Marshall, Muzakhir S. Amanzholov, R. Kannan","doi":"10.1109/ICCITECHN.2018.8631936","DOIUrl":null,"url":null,"abstract":"The symmetric rank-k update (SYRK) is a level-3 BLAS routine commonly used by many Data Mining/Machine Learning(DM/ML) algorithms such as regression, dimensionality reduction algorithms like PCA, matrix factorization and k-mean clustering. This paper presents a comprehensive analysis of the SYRK routine under popular dense linear algebra libraries such as OpenBLAS, Intel MKL, and BLIS particularly focusing on edge cases of dense matrices (thin or fat shapes) that are common in DM/ML applications. Our work identifies some performance issues of the SYRK routine in multi-threaded shared memory environments for edge cases and discuss matrix dependent modifications for performance improvement.","PeriodicalId":355984,"journal":{"name":"2018 21st International Conference of Computer and Information Technology (ICCIT)","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference of Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2018.8631936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetric rank-k update (SYRK) is a level-3 BLAS routine commonly used by many Data Mining/Machine Learning(DM/ML) algorithms such as regression, dimensionality reduction algorithms like PCA, matrix factorization and k-mean clustering. This paper presents a comprehensive analysis of the SYRK routine under popular dense linear algebra libraries such as OpenBLAS, Intel MKL, and BLIS particularly focusing on edge cases of dense matrices (thin or fat shapes) that are common in DM/ML applications. Our work identifies some performance issues of the SYRK routine in multi-threaded shared memory environments for edge cases and discuss matrix dependent modifications for performance improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘情况下共享内存环境中syk实现的性能问题
对称rank-k更新(syk)是许多数据挖掘/机器学习(DM/ML)算法(如回归、降维算法(如PCA)、矩阵分解和k-均值聚类)常用的3级BLAS例程。本文对流行的密集线性代数库(如OpenBLAS、Intel MKL和BLIS)下的syk例程进行了全面分析,特别关注DM/ML应用中常见的密集矩阵(瘦或胖形状)的边缘情况。我们的工作确定了多线程共享内存环境中syk例程在边缘情况下的一些性能问题,并讨论了基于矩阵的改进以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Document Feeding Scanner: A Low Cost Approach A Proposed Algorithm and Architecture for Automated Meeting Scheduling and Document Management Website Classification Using Word Based Multiple N -Gram Models and Random Search Oriented Feature Parameters Towards Design and Implementation of a Low-Cost EMG Signal Recorder for Application in Prosthetic Arm Control for Developing Countries Like Bangladesh Power Efficient Distant Controlled Smart Irrigation System for AMAN and BORO Rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1