Hadronic contributions to the muon anomalous magnetic moment

M. Benayoun, J. Bijnens, T. Blum, I. Caprini, G. Colangelo, H. Czy.z, A. Denig, C. Dominguez, S. Eidelman, C. Fischer, P. Gauzzi, Yuping Guo, A. Hafner, M. Hayakawa, G. Herdoiza, M. Hoferichter, Guangshun Huang, K. Jansen, F. Jegerlehner, B. Kloss, B. Kubis, Zhiqing Liu, W. Marciano, P. Masjuan, H. Meyer, T. Mibe, A. Nyffeler, V. Pascalutsa, V. Pauk, M. Pennington, S. Peris, C. Redmer, P. Sánchez-Puertas, B. Shwartz, E. Solodov, D. Stoeckinger, T. Teubner, Marc Unverzagt, M. Vanderhaeghen, M. Wolke
{"title":"Hadronic contributions to the muon anomalous magnetic moment","authors":"M. Benayoun, J. Bijnens, T. Blum, I. Caprini, G. Colangelo, H. Czy.z, A. Denig, C. Dominguez, S. Eidelman, C. Fischer, P. Gauzzi, Yuping Guo, A. Hafner, M. Hayakawa, G. Herdoiza, M. Hoferichter, Guangshun Huang, K. Jansen, F. Jegerlehner, B. Kloss, B. Kubis, Zhiqing Liu, W. Marciano, P. Masjuan, H. Meyer, T. Mibe, A. Nyffeler, V. Pascalutsa, V. Pauk, M. Pennington, S. Peris, C. Redmer, P. Sánchez-Puertas, B. Shwartz, E. Solodov, D. Stoeckinger, T. Teubner, Marc Unverzagt, M. Vanderhaeghen, M. Wolke","doi":"10.22323/1.336.0186","DOIUrl":null,"url":null,"abstract":"The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g−2)μ come from hadronic effects, namely hadronic vacuum polarization (HVP) and hadronic light-by-light (HLbL) contributions. Especially the latter is emerging as a potential roadblock for a more accurate determination of (g−2)μ. The main focus here is on a novel dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. This opens up the possibility of a data-driven determination of the HLbL contribution to (g−2)μ with the aim of reducing model dependence and achieving a reliable error estimate. Our dispersive approach defines unambiguously the pion-pole and the pion-box contribution to the HLbL tensor. Using Mandelstam double-spectral representation, we have proven that the pion-box contribution coincides exactly with the one-loop scalar-QED amplitude, multiplied by the appropriate pion vector form factors. Using dispersive fits to high-statistics data for the pion vector form factor, we obtain aπ-boxμ=−15.9(2)×10−11. A first model-independent calculation of effects of ππ intermediate states that go beyond the scalar-QED pion loop is also presented. We combine our dispersive description of the HLbL tensor with a partial-wave expansion and demonstrate that the known scalar-QED result is recovered after partial-wave resummation. After constructing suitable input for the γ∗γ∗→ππ helicity partial waves based on a pion-pole left-hand cut (LHC), we find that for the dominant charged-pion contribution this representation is consistent with the two-loop chiral prediction and the COMPASS measurement for the pion polarizability. This allows us to reliably estimate S-wave rescattering effects to the full pion box and leads to aπ-boxμ+aππ,π-pole LHCμ,J=0=−24(1)×10−11.","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g−2)μ come from hadronic effects, namely hadronic vacuum polarization (HVP) and hadronic light-by-light (HLbL) contributions. Especially the latter is emerging as a potential roadblock for a more accurate determination of (g−2)μ. The main focus here is on a novel dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. This opens up the possibility of a data-driven determination of the HLbL contribution to (g−2)μ with the aim of reducing model dependence and achieving a reliable error estimate. Our dispersive approach defines unambiguously the pion-pole and the pion-box contribution to the HLbL tensor. Using Mandelstam double-spectral representation, we have proven that the pion-box contribution coincides exactly with the one-loop scalar-QED amplitude, multiplied by the appropriate pion vector form factors. Using dispersive fits to high-statistics data for the pion vector form factor, we obtain aπ-boxμ=−15.9(2)×10−11. A first model-independent calculation of effects of ππ intermediate states that go beyond the scalar-QED pion loop is also presented. We combine our dispersive description of the HLbL tensor with a partial-wave expansion and demonstrate that the known scalar-QED result is recovered after partial-wave resummation. After constructing suitable input for the γ∗γ∗→ππ helicity partial waves based on a pion-pole left-hand cut (LHC), we find that for the dominant charged-pion contribution this representation is consistent with the two-loop chiral prediction and the COMPASS measurement for the pion polarizability. This allows us to reliably estimate S-wave rescattering effects to the full pion box and leads to aπ-boxμ+aππ,π-pole LHCμ,J=0=−24(1)×10−11.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强子对介子异常磁矩的贡献
在标准模型计算μ子(g−2)μ反常磁矩时,最大的不确定性来自强子效应,即强子真空极化(HVP)和强子光-光(HLbL)贡献。特别是后者正在成为更准确地测定(g−2)μ的潜在障碍。本文的主要焦点是基于统一性、解析性、交叉对称性和规范不变性的HLbL张量的一种新的色散描述。这开辟了以数据驱动确定HLbL对(g−2)μ的贡献的可能性,目的是减少模型依赖性并实现可靠的误差估计。我们的色散方法明确地定义了介子极和介子盒对HLbL张量的贡献。使用曼德尔斯塔姆双谱表示,我们已经证明了介子盒的贡献与单回路标量qed振幅完全吻合,乘以适当的介子向量形式因子。通过对介子矢量形式因子的高统计数据进行色散拟合,得到π-boxμ=−15.9(2)×10−11。本文还首次给出了ππ中间态对超出标量- qed介子环的影响的非模型计算。我们将HLbL张量的色散描述与部分波展开相结合,证明了部分波恢复后已知的标量qed结果是恢复的。在基于介子极左切(LHC)构造了合适的γ∗γ∗→ππ螺旋度部分波输入后,我们发现对于主导电荷介子贡献,这种表示与双环手性预测和罗盘测量的介子极化率一致。这使我们能够可靠地估计s波对全介子盒的重散射效应,并得到π-盒μ+ ππ,π-极LHCμ,J=0=−24(1)×10−11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractal structure, power-law distribution and hadron spectrum A Model for Soft and Hard Interactions based on the CGC/Saturation Approach Proper time evolution of magnetic susceptibility in amagnetized plasma of quarks and gluons Transport in Dense Nuclear Matter Higher-order condensate corrections to bottomonium observables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1